1. All resistance values are in ohms, 0.1 Watt or less.
2. All capacitance values are in microfarads.
3. All crystals & oscillator values are in hertz.

Title Page and Contents

- **Page 1**: Title Page and Contents
- **Page 2**: System Block Diagram
- **Page 3**: Power Block Diagram
- **Page 4**: PCB Notes and Holes
- **Page 5**: MPC7450 MAXBUS Interface
- **Page 6**: MPC7450 Data
- **Page 7**: CPU PLL and Configuration Straps
- **Page 8**: Intrepid Maxbus and Boot Straps
- **Page 9**: Intrepid Memory Interface / Boot ROM
- **Page 10**: DDR Memory Mixes
- **Page 11**: 200Pin DDR Memory Sodim Connectors
- **Page 12**: Intrepid AGP 4x/PCI
- **Page 13**: Intrepid Emt/Pk/Usa/Usa Interfaces
- **Page 14**: Intrepid Gpio/Serial/Usa Interfaces/SSCG
- **Page 15**: Intrepid Power Rails
- **Page 16**: Intrepid Decoupling
- **Page 17**: Cardbus Controller (FCI1510)
- **Page 18**: MAP31 AGP & Frame Buffer
- **Page 19**: MAP31 LVDS/TMD/FGPO & GPU Vcore
- **Page 20**: MAP31 Analog, Dvd Interface, Gnd
- **Page 21**: Video Connectors - Inverter, Dvi, Z-Video Dual-Channel Lvds
- **Page 22**: Lmi, Light Sensor, Boostgainer, Sleep Led
- **Page 23**: Internal Connectors - Dvd, Cardslot, Bard Drive, Left Usb/Bluetooth
- **Page 24**: Fan Controller, Maxim, Sound Serial Debug (Jolly Roger, Pwr/Bmt/Reset)
- **Page 25**: USB 2.0
- **Page 26**: Marvell Gigabit Ethernet Phy
- **Page 27**: Firewire A/B Phy
- **Page 28**: Firewire A/B Connectors, Port Power Limiter
- **Page 29**: Pmu (Power Management Unit)
- **Page 30**: Battery Charger and Connector
- **Page 31**: 12.8v System Power Supply / Pmu Power Supply
- **Page 32**: 3.3v / 5v System Power Supplies
- **Page 33**: Cpu Core Voltage Power Supply
- **Page 34**: 1.5v/ 1.8v / 2.5v System Power Supplies
- **Page 35**: Signal Constraints (1 of 2) - Digital/Clk
- **Page 36**: Signal Constraints (2 of 2) - Digital/Diff
- **Page 37**: Signal Constraints (3 of 3) - Power Nets
- **Page 38**: Functional Test Points
- **Page 39**: Revision History (1 of 1)
- **Page 40-41**: Signal Names
- **Page 42-43**: Component Locations

BOM Options

- 03_HOT
- 03_Cold
- GPU_SS
- GPU_Switch
- Serial_Debug
- Vcore_Offset
- 1_5v_Maxbus
- 1_5v_Maxbus
- NEC_USB
- 1_8v_Maxbus
- 1_8v_Maxbus
- BBANG
- BBANG
- Map31
- Map31
- SSCG
- SSCG
- 5v_Ad.Logic
- 5v_Ad.Logic
- 3v_Ad.Logic
- 3v_Ad.Logic
PCB SPECS

THICKNESS: 1.2 MM / 0.047 IN
1/2 OZ CU THICKNESS: 0.7 MILS
1.0 OZ CU THICKNESS: 1.4 MILS

IMPEDEANCE: 50 OHMS +/- 10%
DIELECTRIC: FR-4
LAYER COUNT: 12
SIGNAL TRACE WIDTH: 4 MILS
SIGNAL TRACE SPACING: 4 MILS
PREPREG THICKNESS: 2-3 MILS

SEE PCB CAD FILES FOR MORE SPECIFIC INFO.

BOARD STACK-UP AND CONSTRUCTION

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIGNAL (1/3 OZ + COPPER PLATING)</td>
</tr>
<tr>
<td>2</td>
<td>PREPREG (3MIL)</td>
</tr>
<tr>
<td>3</td>
<td>LAMINATE (4MIL)</td>
</tr>
<tr>
<td>4</td>
<td>PREPREG (3MIL)</td>
</tr>
<tr>
<td>5</td>
<td>LAMINATE (4MIL)</td>
</tr>
<tr>
<td>6</td>
<td>PREPREG (2MIL)</td>
</tr>
<tr>
<td>7</td>
<td>LAMINATE (3MIL)</td>
</tr>
<tr>
<td>8</td>
<td>PREPREG (2MIL)</td>
</tr>
<tr>
<td>9</td>
<td>LAMINATE (4MIL)</td>
</tr>
<tr>
<td>10</td>
<td>PREPREG (3MIL)</td>
</tr>
<tr>
<td>11</td>
<td>LAMINATE (4MIL)</td>
</tr>
<tr>
<td>12</td>
<td>PREPREG (3MIL)</td>
</tr>
</tbody>
</table>

BOARD INFORMATION

APPLE COMPUTER INC. 051-6443 03
SEL = LOW; HOST = B PORT; A PORT = 1000OHM TO GND
SEL = HIGH; HOST = A PORT; B PORT = 1000OHM TO GND
MEM_MUXSEL_H<0> AND MEM_MUXSEL_L<0> ARE ACTIVE LOW
MEM_MUXSEL_H<1> AND MEM_MUXSEL_L<1> ARE ACTIVE HIGH

ADDED 0 OHM RESISTORS IN CASE POLARITY IS WRONG

BIT 0..15

BIT 16..31

BIT 32..47

BIT 48..63
facilitate NAND-tree testing
<table>
<thead>
<tr>
<th>Name</th>
<th>Signal</th>
<th>Min Speed</th>
<th>Max Speed</th>
<th>Min Min</th>
<th>Max Min</th>
<th>Min Max</th>
<th>Max Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT_CPUFB_IN_NORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT_CPUFB_OUT_SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSCLK_CPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSCLK_CPU_UF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_TEA_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_DATA<0..31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_CI_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_QREQ_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_QACK_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_WT_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_TA_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHERNET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIREWIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUSY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOCKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 2/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 4/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_ADDR<12..0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQM_A<7></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQS_A<7></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS<7></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS<6></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA<55..48></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQM_B<5..4></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQM_A<5..4></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQM<5..4></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS<5..4></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQM<3..2></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQS_B<3..2></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQS_A<3..2></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS<3..2></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQS_A<1></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS<1></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA<15..8></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM_DQS_B<0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS<0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA<7..0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_CLK27M_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU_FBCLK1_L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU_SSCLK_IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU_CLK27M_OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU_FBCLK1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHenet_PHY_TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENET_LINK_TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENET_PHY_TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENET_LINK_GBE_REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIENET_PHY_RX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_CLK27M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIK27M_GPU_XOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIK33M_CBUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIK33M_USB2_UF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIK66M_GPU_AGP_UF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIK18M_INT_XOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL LENGTH CONTROLLED BY SPREADSHEET

200.0000

10 MIL SPACING

250.0000

5 MIL SPACING

500.0000

NET SPACING TYPE

49.15 MHz:::

98.03 MHz:::

200.0000

25.00 MHz:::

125.0 MHz:::

500.0000

33.00 MHz:::

33.00 MHz:::

33.00 MHz:::

500.0000
Differential Signals

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Description</th>
<th>Logic Type</th>
<th>Clock Type</th>
<th>Application Type</th>
<th>Technology Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal Constraints - Page 2

INTERNAL LAYER

- $\varepsilon_r = 4.3$ (Dielectric Constant)
- $W = \text{mils}$ (Trace Width)
- $B = 12.2\text{mils}$ (Distn Between 2 Gnd Planes)
- $T = 0.7\text{mils}$ (Trace Thickness)
- $S = \text{mils}$ (Separation of Diff Traces)
- $Z_{	ext{single}} = 51.7\text{ohms}$
- $Z_{	ext{off}} = 99.8\text{ohms}$

FOR FIREWIRE

- $\varepsilon_r = 4.3$ (Dielectric Constant)
- $W = \text{mils}$ (Trace Width)
- $B = 12.2\text{mils}$ (Distn Between 2 Gnd Planes)
- $T = 0.7\text{mils}$ (Trace Thickness)
- $S = \text{mils}$ (Separation of Diff Traces)
- $Z_{	ext{single}} = 53.3\text{ohms}$
- $Z_{	ext{off}} = 107.1\text{ohms}$

INTERNAL LAYER (USB1.1/USB 2.0)

- $\varepsilon_r = 4.3$ (Dielectric Constant)
- $W = \text{mils}$ (Trace Width)
- $B = 12.2\text{mils}$ (Distn Between 2 Gnd Planes)
- $T = 0.7\text{mils}$ (Trace Thickness)
- $S = \text{mils}$ (Separation of Diff Traces)
- $Z_{	ext{single}} = 51.5\text{ohms}$ (USB 1.1)/ 46.2ohms (USB 2.0)
- $Z_{	ext{off}} = 89.3\text{ohms}$ (USB 1.1)/ 89.4ohms (USB 2.0)

Apple Computer Inc.

NOTICE OF PROPRIETARY PROPERTY

The information contained herein is the proprietary property of Apple Computer Inc. and is furnished to you for sole use by Apple. You are not to reproduce or copy it in whole or in part. You agree to the following:

1. To protect the accuracy of information furnished by Apple.
2. To obtain from Apple only copies made by you for backup purposes.
3. To return to Apple all copies made by you, including computer storage media (in whole or in part).

For further details, contact your Apple representative.
Part Cross-Reference for the entire design

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
<th>Column 9</th>
<th>Column 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. This is a part cross-reference for the entire design.
2. The columns represent different sections or layers of the design.
3. Each cell contains the component type, number, and possibly additional details.
4. The design is likely a circuit diagram with components placed in various rows and columns.

Legend:

- **TRA:** Transistor
- **IND:** Inductor
- **FUSE:** Fuse
- **DIODE:** Diode
- **RES:** Resistor

Example Entries:

- **TRA_2N7002DW 30:** Transistor 2N7002DW, section 30
- **IND_3P 32:** Inductor 3P, section 32
- **FUSE 30:** Fuse, section 30
- **DIODE_SCHOT 34:** Diode Schottky, section 34
- **RES 32:** Resistor, section 32

Additional Information:

- The diagram uses a grid format with labels for each section.
- Specific components and their placements are detailed in the table format provided.
- The design likely involves electronic components necessary for a specific application or circuit function.
R627 RES 34
R623 RES 24
R622 RES 14
R621 RES 13
R619 RES 22
R618 RES 22
R615 RES 22
R614 RES 14
R612 RES 23
R611 RES 19
R610 RES 19
R608 RES 19
R607 RES 19
R606 RES 22
R605 RES 22
R601 RES 23
R596 RES 29
R593 RES 29
R590 RES 25
R582 RES 22
R578 RES 30
R577 RES 27
R574 RES 27
R571 RES 30
R570 RES 30
R569 RES 29
R568 RES 22
R567 RES 30
R565 RES 30
R564 RES 27
R562 RES 29
R555 RES 27
R553 RES 24
R548 RES 30
R547 RES 27
R544 RES 29
R541 RES 31
R540 RES 25
R538 RES 32
R532 RES 22
R531 RES 25
R528 RES 32
R525 RES 27
R522 RES 27
R520 RES 32
R516 RES 27
R515 RES 32
R513 RES 29
R512 RES 30
R509 RES 27
R508 RES 31
R507 RES 32
R506 RES 32
R505 RES 29
R501 RES 29
R499 RES 30
R498 RES 30
R494 RES 27
R492 RES 29
R488 RES 30
R484 RES 27
R483 RES 31
R482 RES 32
R473 RES 30
R472 RES 28
R471 RES 27
R464 RES 27
R452 RES 8 7 6 5 4 3 2 1
ZT26 HOLE_VIA 4
ZT20 HOLE_VIA 4
ZT19 HOLE_VIA 4
ZT18 HOLE_VIA 4
ZT14 HOLE_VIA 4
ZT12 HOLE_VIA 4
ZT9 HOLE_VIA 4
ZT5 MTGHOLE 4
ZT2 MTGHOLE 4
Y3 CRYSTAL 26
Y2 CRYSTAL_4PIN 20
Y1 CRYSTAL 14
XW19 SHORT 30
XW17 JUMPER 31
XW16 JUMPER 32
XW15 SHORT 33
XW14 JUMPER 34
XW11 JUMPER 34
XW10 JUMPER 32
XW8 SHORT 32
XW4 SHORT 31
XW2 SHORT 19
XW1 SHORT 34
U51 MAX6804 29
U45 INTREPID 8 9 12 13 14 15
U41 MAX6649 19
U39 UPD720101_FBGA 25
U37 VREG_LT1962 27
U34 VREG_LM2594 27
U31 MAX1772 30
U29 TSB81BA3A 27
U25 VREG_LP2951 31
U18 LTC1625 31
U17 FEPR_1MX8 9
U15 COMPARATOR_LMC7211 30
U10 CBTV4020 10
U4 SN74AUC1G08 22
U2 SN74AUC1G08 22
SP6 SPKR_CLIP_P84 4
SP5 SPKR_CLIP_P84 4
SP2 SPKR_CLIP_P84 4
SH1 SHLD_3P_EMI 4
RP53 RPAK4P 22
RP52 RPAK4P 22 25
RP51 RPAK4P 14
RP47 RPAK4P 14
RP42 RPAK10P2C 22
RP41 RPAK4P 29
RP35 RPAK4P 9
RP28 RPAK4P 20
RP20 RPAK4P 12
RP16 RPAK4P 13
RP14 RPAK4P 13
RP13 RPAK4P 23
RP10 RPAK4P 23
RP9 RPAK4P 23
RP5 RPAK4P 23
ZT81 HOLE_VIA 4
ZT79 HOLE_VIA 4
ZT77 HOLE_VIA 4
ZT70 HOLE_VIA 4
ZT69 HOLE_VIA 4
ZT67 HOLE_VIA 4
ZT65 HOLE_VIA 4
ZT63 HOLE_VIA 4
ZT59 HOLE_VIA 4
ZT57 HOLE_VIA 4
ZT56 HOLE_VIA 4
ZT53 HOLE_VIA 4
ZT49 HOLE_VIA 4
ZT46 HOLE_VIA 4
ZT44 HOLE_VIA 4
ZT43 HOLE_VIA 4
ZT42 HOLE_VIA 4
ZT40 HOLE_VIA 4
ZT34 HOLE_VIA 4
ZT33 HOLE_VIA 4
ZT32 HOLE_VIA 4