3. ALL CRYSTALS & OSCILLATOR VALUES ARE IN HERTZ.

1. ALL RESISTANCE VALUES ARE IN OHMS, 0.1 WATT +/- 5%.

Table of Contents:

1. Table of Contents
2. System Block Diagram
3. BOM Configuration
4. Functional / ICT Test
5. Signal Aliases
6. CPU 1 OF 2-PSB
7. CPU 2 OF 2-PSB/GND
8. CPU Decoupling & VDG
9. CPU Misc2-TEMP SENSOR
10. CPU ISP2D TEST DEBUG
11. CPU ISP2D TEST DEBUG
12. NB CPU Interface
13. NB PIGS / Video Interfaces
14. NB Misc Interfaces
15. NB DGB2 Interfaces
16. NB Power 1
17. NB Power 2
18. NB Grounds
19. NB (GM) Decoupling
20. NB Config Straps
21. SBI 1 OF 2
22. SBI 2 of 2
23. SBI 3 OF 2
24. SBI 4 OF 2
25. SB Decoupling
26. SB Misc
27. M1 SMBus Connections
28. DDR2 2D-DIMM Connector A
29. DDR2 2D-DIMM Connector B
30. Memory Active Termination
31. Memory Vtt Supply
32. GDR2 Ugs
33. CLOCK
34. Clock Terminalization
35. Mobile Clocking
36. PATA Connector
37. Ethernet Connector
38. Yukon Connector
39. Firewire Power Control
40. FIREWIRE CONTROLLER
41. FireWire Port Power
42. FireWire Ports
43. Internal USB Connections
44. External USB Connector
45. SGL I/O Board Connect
46. PCI-E Connectors
47. SMC
48. SMC Support
49. LPCI Debug Connector
50. Thermal Sensors
51. Current & Voltage Sensing
52. SPI BOOTROM
53. ALS Support
54. Fan Connectors
55. Sudden Motion Sensor (SMS)
56. TPM
57. HDMI GPU VCore Regulator
58. 3.5V / 1.5V Power Supply
59. 1.8V & 1.65V Regulators
60. 1.65V Supply
61. 1.8V / 1.05V Power Supplies
62. 2V & 2.5V Power Supply & Power Control
63. Power Aliases
64. PBus-In & Battery Connectors
65. ATI M55 PCI-E
66. GPU (M55) Core Supplies
67. ATI M55 Core Power
68. ATI M55 Frame Buffer I/F
69. GPU Straps
70. DDR3 Frame Buffer A
71. DDR3 Frame Buffer B
72. ATI M55 GPU/DVD/Mini
73. ATI M55 Video Interfaces
74. Internal Display Connectors
75. External Display Connector
76. M1 Specific Connectors
77. LVDS Interface Pull-downs
78. Rapa Platform Constraints
79. More System Constraints
80. M1 Spacing & Physical Constraints
81. M1 Net Properties
82. M1 Net Properties
Service BOMs

<table>
<thead>
<tr>
<th>BOM NUMBER</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>630-7705</td>
<td>376S0448</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>128S0095</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>630-7704</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>630-7685</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>630-7684</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>341S1873</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>359S0101</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>353S1465</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>338S0315</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>341S1875</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>338S0274</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>337S3268</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>337S3267</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>333S0350</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>826-4393</td>
<td>Alternate Parts</td>
</tr>
<tr>
<td>630-7705</td>
<td>826-4393</td>
<td>Alternate Parts</td>
</tr>
</tbody>
</table>

BOM Options

<table>
<thead>
<tr>
<th>BOM OPTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE_W36</td>
<td>M1/Common, CPU_1.83GHz, VRAM_SAM128</td>
</tr>
<tr>
<td>EEE_VWQ</td>
<td>M1/Common, CPU_2.16GHz, VRAM_SAM256</td>
</tr>
<tr>
<td>EEE_VWP</td>
<td>M1/Common, CPU_2.0GHz, VRAM_SAM256</td>
</tr>
</tbody>
</table>

Module Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DEI</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>4</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
</tbody>
</table>

Alternate Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DEI</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
</tbody>
</table>

Bar Code Label / EEE #’s

<table>
<thead>
<tr>
<th>BOM NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DEI</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
<tr>
<td>32221281</td>
<td>1</td>
<td>Q1,14.9062 Mohs (0.006W)</td>
<td>T0090</td>
<td>CRITICAL</td>
<td>VRA/40163501</td>
</tr>
</tbody>
</table>

BOM Configuration

<table>
<thead>
<tr>
<th>BOM NAME</th>
<th>BOM OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATE, COMMON, M1_COMMON1, M1_COMMON2, M1_COMMON3</td>
<td>CRITICAL</td>
</tr>
</tbody>
</table>

Notes:
- Bar Code Label / EEE #’s: [EEE:VWP]
- BOM Configuration: [EEE_W36, M1_COMMON, CPU_1.83GHZ, VRAM_SAM128]
- EEE Options: [EEE_VWQ, M1_COMMON, CPU_2.16GHZ, VRAM_SAM256]
- EEE Options: [EEE_VWP, M1_COMMON, CPU_2.0GHZ, VRAM_SAM256]
- Reference Design: [EEE_W37, M1_COMMON, CPU_2.0GHZ, VRAM_SAM256]
- Reference Design: [EEE_VWQ, M1_COMMON, CPU_2.16GHZ, VRAM_SAM256]
- Reference Design: [EEE_VWP, M1_COMMON, CPU_1.83GHZ, VRAM_SAM128]

Important:
- No reproduction or copying is allowed without proper authorization.
- Confidentiality is agreed to by all parties involved.
- All rights and holders of the document are reserved.
- The document cannot be reproduced or copied in whole or in part.

Reference:
- Reference Design: [EEE_W36, M1_Common, CPU_1.83GHZ, VRAM_SAM128]
- Reference Design: [EEE_VWQ, M1_Common, CPU_2_16GHZ, VRAM_SAM256]
- Reference Design: [EEE_VWP, M1_Common, CPU_1_83GHZ, VRAM_SAM128]
Chassis connection to be made at the mounting hole southeast of the LVDS connector.

Chassis connection to be made at the mounting hole northwest of the DVI connector.

Ethernet Power Management Support

NOTE: BOM options "USB_G_OC_PU" and "SB_GPIO30" are mutually-exclusive.

USB Port "A" (Debug Port) = Right USB 2.0 Port
- USB_A_P = USB A_P
- USB_A_N = USB A_N
- USB_BT_P = USB_BT_P
- USB_BT_N = USB_BT_N
- USB_IR_P = USB_IR_P
- USB_IR_N = USB_IR_N
- USB2_RT_N = USB2_RT_N
- RTUSB_OC_L = RTUSB_OC_L
- USB2_EXCARD_N = USB2_EXCARD_N
- USB2_CAMERA_N = USB2_CAMERA_N
- USB2_CAMERA_P = USB2_CAMERA_P
- USB2_LT_P = USB2_LT_P
- UNUSED_USB_B_OC_L = UNUSED_USB_B_OC_L
- USB_BT_P = USB_BT_P
- USB_BT_N = USB_BT_N
- USB2_EXCARD_P = USB2_EXCARD_P
- USB2_CAMERA_P = USB2_CAMERA_P
- USB2_CAMERA_N = USB2_CAMERA_N
- USB2_LT_N = USB2_LT_N
- UNUSED_USB_B_OC_L = UNUSED_USB_B_OC_L

USB Port "B" = Trackpad (Gray)

USB Port "C" = Left USB 2.0 Port
- USB_C_P = USB C_P
- USB_C_N = USB C_N
- USB_BT_P = USB_BT_P
- USB_BT_N = USB_BT_N
- USB_IR_P = USB_IR_P
- USB_IR_N = USB_IR_N
- USB2_RT_N = USB2_RT_N
- RTUSB_OC_L = RTUSB_OC_L
- USB2_EXCARD_N = USB2_EXCARD_N
- USB2_CAMERA_N = USB2_CAMERA_N
- USB2_CAMERA_P = USB2_CAMERA_P
- USB2_LT_P = USB2_LT_P
- UNUSED_USB_B_OC_L = UNUSED_USB_B_OC_L

USB Port "D" = Camera

USB Port "E" = ExpressCard

USB Port "F" = IR Receiver

USB Port "G" = Bluetooth (MI3P)

USB Port "H" = Reserved (PCI-E Mini Card)

Trace deleted to make room for other diffpairs over RAM connector.
CPU VCORE HF AND BULK DECOUPLING

- 4x 470uF, 20x 22uF O805

NOTE: This cap is shared between CPU and NB

CPU VCORE VID Connections

Resistors to allow for override of CPU VID

- CPU VID<6>
- CPU VID<5>
- CPU VID<4>
- CPU VID<3>
- CPU VID<2>
- CPU VID<1>
- CPU VID<0>

VCCA (CPU AVdd) Decoupling

- 10µF, 1x 0.01µF

VCCP (CPU I/O) Decoupling

- 1x 470uF, 6x 0.1uF 0402

NOTE: This cap is shared between CPU and NB
OUT
OUT
OUT
OUT

CPU ITP700FLEX DEBUG SUPPORT

ITP TCK SIGNAL Layout Note:
ROUTE THE TCK SIGNAL FROM ITP700FLEX CONNECTOR'S TCK PIN TO CPU'S TCK PIN AND THEN FORK BACK FROM CPU TCK PIN AND ROUTE BACK TO ITP700FLEX CONNECTOR'S PBO PIN.
LVDS Disable

Tie VCC_LVDS and VCC_LVDS to GND. If LVDS is not used, VCC_LVDS must remain powered with proper decoupling. Otherwise, tie VCC_LVDS to GND also.

CRT Disable

Tie CRT_DDC_DATA to GND also.

TV-Out Disable

Tie R/R#/G/G#/B/B# and IREF to VCC Core rail, and tie VSSA_CRTDAC and VCCSYNC to GND.

Composite: DACA only

Component: DACA, DACB & DACC

Filtering components. Unused DAC outputs should be tied to VCCD_LVDS also.

S-Video: DACB & DACC only

Otherwise, tie VCCD_LVDS to GND also.

TV-Out Signal Changes

Composite: DACA only

Component: DACA, DACB & DACC

Unused DAC outputs must remain powered with 75-ohm resistors. Tying DAC outputs to GND through 75-ohm resistors is unnecessary.

CRT Disable

Tie DAC_C0, IF/IF, and IFP to 1.5V power rail. Tie DAC_C1, VCC_DAC0, DAC_IREF, and DAC_IREF to 1.5V power rail. Tie VCAP_C0 to GND.

CRT Disable

Tie DAC_C0, IF/IF, and IFP to VCC Core rail, tie DAC_IREF to VCC Core rail, and tie DAC_C1, DAC_IREF, and DAC_IREF to GND.
RTC Battery Connector

- Critical: VR_PWRGD_CK410
- Power: SB_RTC_X2
- Output: =PP3V3_S0_SB_PM

SB RTC Crystal Circuit

10MHz

Platform Reset Connections

- **Unbuffered**
 - Debug_RST_L
 - Peg_Reset_L
 - Nb_Reset_In_L

- **Buffered**
 - Lio_Plt_Reset_L
 - Pmi_Io_Reset_L

Initial resistor values are based on CRN, but may change after characterization.

SB Misc

- Smt: Master-Quarter
- Smt: Fast-Quarter

Notice of Informational Property

The information in this document is for informational purposes only. It is not to be reproduced or copied in whole or part.
NOTE: This page does not supply VREF.

BOM options provided by this page:
- =PPSPD_S0_MEM (2.5V - 3.3V)
- =I2C_SODIMMA_SDA

"Lower" (surface-mount) slot

DDR2 Bypass Caps
(For return current)

DDR2 SO-DIMM Connector A

APPLE COMPUTER INC.

Rev. A
The reference voltage must be provided.

NOTE: This page does not supply VREF.

Power aliases required by this page:

- **C2900**: 2.2uF
- **C2901**: 603
- **CERM**: 1
- **C2900**: 0.1uF
- **C2900**: 10V
- **C2900**: 20%

"Upper" (thru-hole) slot

DDR2 Bypass Caps

(For return current)

DDR2 SO-DIMM Connector B

- **C2908**: 10uF
- **C2909**: 10uF
- **C2910**: 10uF
- **C2911**: 10uF
- **C2912**: 10uF
- **C2913**: 10uF
- **C2914**: 10uF
- **C2915**: 10uF
- **C2916**: 10uF
- **C2917**: 10uF
- **C2918**: 10uF
- **C2919**: 10uF
- **C2920**: 10uF
- **C2921**: 10uF

Resistance prevents ground shorts.
One cap for each side of every RPAK, one cap for every two discrete resistors

Ensure C1L and C2T resistors are close to 8D-DIMM connector
disables MEMVTT in sleep. MEMVTT_EN can be used to leave 1.8V powered in S3. Okay to turn off 5V and DDR2 VTT Regulator
Transformers should be mirrored on opposite sides of the board.

Place one cap at each pin of transformer.

Short shielded RJ-45.
Page Notes

Power aliases required by this page:
- TWPWR_PWRON (system supply for bus power)
- TWPWR_PWRON

Signal aliases required by this page:
- FWPSNCH (see related test note below)

BOM options provided by this page:

- =PP3V3_S0_FWPORTPWRSW
- =PPBUS_S0_FWPWRSW (system supply for bus power)

Port Power Switch
- Enables port power when machine is running or on AC.

FireWire Port Current Sense
- FWPWR_IOUT
- FWPWR_EN_L
- FWPWR_EN_L_DIV
- FWPWR_EN_L

FireWire Port Power

SYNC_MASTER=(MASTER)
SYNC_DATE=(MASTER)

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.2 mm

FWPWR_EN_L
FWPWR_EN_L_DIV

PM_SLP_S3_L

VOLTAGE=12.6V

Port Power Switch

SYNC_MASTER=(MASTER)
SYNC_DATE=(MASTER)

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.2 mm

FireWire Port Current Sense

FWPWR_IOUT

Notice of Proprietary Property

The information contained herein is the proprietary property of Apple Computer, Inc., the possessor. The information is provided to assist in the understanding of the related diagrams. It is not to be reproduced in whole or part without the written consent of Apple Computer, Inc.
NOTE: This page is expected to contain Signal aliases required by this page:

PROVIDED

Power aliases required by this page:

Place close to FireWire PHY

2nd TPA/TPB pair unused
3rd TPA/TPB pair unused

FW Power Class Strap
Single-point system reset power

Late-VG Protection Power

"Snapback" & "Late VG" Protection

Cable Power
Top-Case Connector

Camera Connector

Internal USB Connections

NOTICE OF PROPRIETARY PROPERTY

The information contained herein is the proprietary property of Apple Computer, Inc. and is furnished pursuant to a written agreement. The recipient agrees to the following:

I. To maintain the DOCUMENT in CONFIDENCE
II. Not to REPRODUCE or COPY it
III. Not to REVEAL or PUBLISH in WHOLE or PART

This notice of proprietary property must be retained on all copies of this DOCUMENT. The information contained herein is the PROPRIETARY PROPERTY of APPLE COMPUTER, INC. THE POSSESSOR and user of this DOCUMENT agrees to the terms of use described above.

MIN_LINE_WIDTH=0.25 mm
MIN_NECK_WIDTH=0.2 mm
VOLTAGE=5V
GND_CAMERA
VOLTAGE=0V
MIN_LINE_WIDTH=0.25 mm
MIN_NECK_WIDTH=0.2 mm

PCI-E x1 Port "A" = Ethernet (Yukon)
PCI-E x1 Port "B" = PCI-E Mini Card
PCI-E x1 Port "C" = ExpressCard
PCI-E x1 Port "D" = Unused
PCI-E x1 Port "E" = Unused
PCI-E x1 Port "F" = Unused

C5710
-0.1uF 10% 16V X5R 402
PCAR5710

C5711
-0.1uF 10% 16V X5R 402
PCAR5711

C5720
-0.1uF 10% 16V X5R 402
PCAR5720

C5721
-0.1uF 10% 16V X5R 402
PCAR5721

PCI-E Connections

PCIE_F_D2R_P
PCIE_F_D2R_N
PCIE_F_R2D_C_N
PCIE_F_R2D_C_P
PCIE_F_R2D_P

PCIE_E_D2R_P
PCIE_E_D2R_N
PCIE_E_R2D_C_N
PCIE_E_R2D_C_P
PCIE_E_R2D_P

PCIE_D_R2D_C_P
PCIE_D_R2D_C_N
PCIE_D_D2R_P
PCIE_D_D2R_N

PCIE_C_D2R_P
PCIE_C_D2R_N
PCIE_C_R2D_C_N
PCIE_C_R2D_C_P
PCIE_C_R2D_P

PCIE_B_D2R_P
PCIE_B_D2R_N
PCIE_B_R2D_C_N
PCIE_B_R2D_C_P
PCIE_B_R2D_P

PCIE_MINI_D2R_P
PCIE_MINI_D2R_N
PCIE_MINI_R2D_C_N
PCIE_MINI_R2D_C_P
PCIE_MINI_R2D_P

PCIE_EXCARD_D2R_P
PCIE_EXCARD_D2R_N
PCIE_EXCARD_R2D_C_N
PCIE_EXCARD_R2D_C_P
PCIE_EXCARD_R2D_P

MAKE_BASE=TRUE
TP_PCIE_F_D2RP
TP_PCIE_F_D2RN
TP_PCIE_F_R2DP
TP_PCIE_F_R2DN
TP_PCIE_E_D2RP
TP_PCIE_E_D2RN
TP_PCIE_E_R2DN
TP_PCIE_E_R2DP
TP_PCIE_D_R2DP
TP_PCIE_D_R2DN
TP_PCIE_D_D2RN
TP_PCIE_D_D2RP
TP_PCIE_C_R2D_C_N
TP_PCIE_C_R2D_C_P
TP_PCIE_C_D2R_P
TP_PCIE_C_D2R_N
TP_PCIE_B_D2R_P
TP_PCIE_B_D2R_N
TP_PCIE_B_R2D_C_P
TP_PCIE_B_R2D_C_N
TP_PCIE_B_R2D_P
TP_PCIE_MINI_D2R_P
TP_PCIE_MINI_D2R_N
TP_PCIE_MINI_R2D_P
TP_PCIE_MINI_R2D_N
TP_PCIE_EXCARD_D2R_P
TP_PCIE_EXCARD_D2R_N
TP_PCIE_EXCARD_R2D_C_P
TP_PCIE_EXCARD_R2D_C_N
TP_PCIE_EXCARD_R2D_P
TP_PCIE_EXCARD_R2D_N
GPU / Heat Pipe Thermal Sensor

Right-Side/Fin Stack Thermal Sensor

CPU Back-Up Thermal Diode

CPU Back-Up Thermal Diode

- **CPU Back-Up Thermal Diode**
 - **Part Number:** B6110
 - **Device:** 2N3904LF
 - **Package:** SOT23

Placement note:
- Place the CPU Back-Up Thermal Diode in between VRAM.
- Place near the GPU center.

Layout note:
- Minimize stubs between these R's and R1001 & R1002.

Right-Side/Fin Stack Thermal Sensor

- **Part Number:** G6120
 - **Device:** 2N3904LF
 - **Package:** SOT23

CRITICAL

J6120

CPU Back-Up Thermal Diode Placement note:
- Place the CPU Back-Up Thermal Diode below and to the left of the speaker hole.

General Notes:
- **Part Number:** C6100
 - **Device:** 0.1uF
 - **Package:** 402

Thermal Sensors

- **Part Number:** X6100
 - **Device:** SMBUS_RSTHMSNS

References:
- **Reference Design:** ADT7461
- **Reference Design:** DS18B20

BOM Option:
- **Part Number:** 518S0226
 - **Device:** CRITICAL

Remark:
- MB-LF 1/16W 402 5%

III NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

II NOT TO REPRODUCE OR COPY IT

PROPERTY OF APPLE COMPUTER, INC. THE POSSESSOR TO MAINTAIN THE DOCUMENT IN CONFIDENCE

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY NOTICE OF PROPRIETARY PROPERTY

Thermal Sensors

- **Part Number:** G6120
 - **Device:** 2N3904LF
 - **Package:** SOT23

References:
- **Reference Design:** ADT7461
- **Reference Design:** DS18B20

BOM Option:
- **Part Number:** 518S0226
 - **Device:** CRITICAL

Remark:
- MB-LF 1/16W 402 5%

III NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

II NOT TO REPRODUCE OR COPY IT

PROPERTY OF APPLE COMPUTER, INC. THE POSSESSOR TO MAINTAIN THE DOCUMENT IN CONFIDENCE

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY NOTICE OF PROPRIETARY PROPERTY
R6309 is not needed when sharing SPI flash with ICH7M and TEKOA (LAN chip).

R6307 and R6306 should be placed less than 100 mils from ICH7M.

R6303 should be placed less than 100 mils from Flash ROM.
Left ALS Filter

Left ALS circuit has 1K series-R

Right ALS Circuit

Keyboard LED Driver

ALS Support
Connect to RUNSS pins to control outputs.

If disconnected, power up with VIN.

NOTE: Be aware of pull-ups to VIN on these signals.

8A max output

Vout = 4.98V

(L7620 limits)

Vout = 1.49V

(L7660 & Q7660 limit)
NOTE: Be aware of pull-up on this signal. If unconnected, powers up with PVIN.

Vout = 0.8V * (1 + Ra / (Rb + Rc))

Vout = 1.205V

1.25A max output (Switcher limit)

2.5A max output (Switcher limit)
Power Control Signals

3.425V "G3Hot" Supply
Supply needs to guarantee 3.42V delivered to MCU VCore generator

1.5V / 1.05V PWRGD Circuit
Reports when 1.5V S0 and 1.05V S0 are in regulation

Other S0 Rails PWRGD Circuit
Reports when 5V S0, 3.3V S0, 2.5V S0, 1.8V S0, 1.2V S0 and 0.9V S0 are in regulation

Unused PGOOD Signals
Unused PGOOD Signals

3.3V G3Hot Supply & Power Control
This Master-Couplers and Slave-Couplers

III NOT TO REVEAL OR PUBLISH IN WHOLE OR PART
II NOT TO REPRODUCE OR COPY IT
THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY
NOTICE OF PROPRIETARY PROPERTY

Please note that removing ethernet power in battery sleep.
Before enabling GPU VCore to support 2.5V S3 and 1.2V S3 supplies are controlled by ethernet power control circuit.

2N7002DW-X-F SOT-363

Design by IBM

470K 5%
1/16W
10K
1/16W
Back-Bias Positive Supply

Back-bias positive supply provides VDDC + 0.5V when active.

Note: BBP tracks VDDC based on GPU voltage GPIO. When inactive, provides VDDC to BBP pins.

Back-Bias Negative Supply

Back-bias negative supply provides VDDC - 0.5V when active.

For proper M56 power sequence, this pull-up voltage must be high enough to satisfy BBP VIN (where VIN = 1.1V).

Vin must be > 2.0V.

Recommended values:

- Vin: 5V
- Rb: > 50 Ohm
- Ra: Vin / 50 uA

For proper M56 power sequence, this pull-up voltage must be high enough to satisfy BBP VIN (where VIN = 1.1V).

Vin must be > 2.0V.

Recommended values:

- Vin: 5V
- Rb: > 50 Ohm
- Ra: Vin / 50 uA

GPU VCore Supply

Vout(low) = 0.59V * (1 + Ra/Rb)

Vout(high) = 0.6V * (1 + Ra/Req)

Req = Rb || Rc

For proper M56 power sequence, this pull-up voltage must be high enough to satisfy BBP VIN (where VIN = 1.1V).

Vin must be > 2.0V.

Recommended values:

- Vin: 5V
- Rb: > 50 Ohm
- Ra: Vin / 50 uA

Vout = -0.55V

125mA max output

(Regulator limit)

Vout = 1.10V / 0.95V

17A max output

(G8528 limit)
NOTE: _UF_ nets cross DDR2 signals and pick up significant noise. Common-mode chokes are to remove this noise from SATA signals.
LVDS Interface Pull-downs

NOTE: These parts are to counter an invalid state caused by the reset part. Blue voltage in panel is present on LVDS interface pin even when pump-up from backlight has ceased. Pull-down resistors reduce long-term reliability issues. Pull-down resistors reduce the pump-up in the panel, though some voltage will still be seen on LVDS signals when they should be 0V.

LVDS Interface Pull-downs

NOTE: These parts are to counter an invalid state caused by the reset part. Blue voltage in panel is present on LVDS interface pin even when pump-up from backlight has ceased. Pull-down resistors reduce long-term reliability issues. Pull-down resistors reduce the pump-up in the panel, though some voltage will still be seen on LVDS signals when they should be 0V.
NOTE: Design Guide allows closer spacing if signal lengths can be shortened.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Section 6.2

TABLE:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Spacing Type 1</th>
<th>Spacing Type 2</th>
<th>Area Type</th>
<th>Min. Width</th>
<th>Min. Neck Width</th>
<th>Min. Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>1.5:1</td>
<td>3:1</td>
<td>2:1</td>
<td>3:1</td>
<td>1.8:1</td>
<td></td>
</tr>
<tr>
<td>DDR2</td>
<td>1.5:1</td>
<td>3:1</td>
<td>ST</td>
<td>2:1</td>
<td>1.8:1</td>
<td></td>
</tr>
<tr>
<td>PCIE</td>
<td>1.5:1</td>
<td>3:1</td>
<td>ST</td>
<td>2:1</td>
<td>1.8:1</td>
<td></td>
</tr>
</tbody>
</table>

All FSB signals with impedance requirements are 58-Ohm single-ended.

- Most CPU signals with impedance requirements are 58-Ohm single-ended.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 7.2, 9.2 & 10.5.2

Clock Signal Constraints

- Clock signals require 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 7.2, 9.2 & 10.5.2

Internal Interface Constraints

- USB 2.0 interface requires 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Section 10.10.1.2

PCI-Express / DMI Bus Constraints

- PCIe signals require 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 7.2, 9.2 & 10.5.2

Disk Interface Constraints

- Disk interface signals require 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Section 10.17.1.1

NOTE: Design Guide does not indicate FSB spacing to other signals, assumed 3:1.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 4.4, 4.6.2, & 5.8.2.4

NAPA PLATFORM CONSTRAINTS

- CPU, FSB, and memory signals require 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Section 10.17.1.1

NAPA PLATFORM CONSTRAINTS

- All signals require 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 4.4, 4.6.2, & 5.8.2.4

DIMENSIONS

- All signals require 58-Ohm single-ended impedance.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 4.4, 4.6.2, & 5.8.2.4

NOTE: Design Guide recommends at least 25 mils, >50 mils preferred.

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Section 10.17.1.1

NOTE: Design Guide recommends at least 25 mils, >50 mils preferred.
VGA should be routed as close to 75-ohm single-ended impedance as possible.

ADDR/CTRL lines should route 35-ohms to T, then 55-ohms to each VRAM device.

VGA signals should be kept at least 15 mils from other traces.

Ground shields recommended around VGA signals.

NOTE: Layout Guide does not specify LVDS/TMDS spacing to other traces other than "do not run close"

LVDS and TMDS pairs should be kept at least 25 mils apart.

LVDS and TMDS signals are 100-ohm +/- 10% differential impedence.

DQ/DQM/DQS lines are 40-ohm single-ended impedence.

CLK lines are specified in Layout Guide as 40-ohm single-ended. We treat as 75-ohm differential.

LVDS and TMDS pairs should be kept at least 25 mils apart.

LVDS_100D = STANDARD

VGA_75S = STANDARD

FBB_PAIR2PAIR = 2:1_SPACING

15 MIL = MINIMUM LINE WIDTH

TMDS_PAIR2PAIR = 25 MIL

100_OHM_DIFF = DIFFPAIR PRIMARY GAP

75_OHM_DIFF = DIFFPAIR NECK GAP

ENET_100D = STANDARD

PCI_55S = STANDARD

FW_110D = STANDARD

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints

GDDR3 (Frame Buffer) Memory Bus Constraints

Video Signal Constraints

High-Speed I/O Interface Constraints

PCI Bus Constraints