1. ALL RESISTANCE VALUES ARE IN OHMS, 0.1 WATT +/- 5%.

PART NUMBER

<table>
<thead>
<tr>
<th>QTY</th>
<th>REFERENCE DES</th>
<th>CRITICAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

820-2059

051-7164 CRITICAL

PAGE CONTENTS

1. Table of Contents
2. Schematic Block Diagram
3. Power Block Diagram
4. PWB Component List
5. Functional & Size Chart
6. Signal Aliases
7. CPU 1 & 2-USB
8. CPU 2 & 2-USB/SND
9. CPU Decoupling & VCC
10. CPU Power 2
11. CPU Power 3
12. SB Config Straps
13. SB 4 OF 6
14. SB 2 OF 4
15. SB 8 OF 4
16. SB Decoupling
17. SB Power 1
18. SB PWB Interface
19. SB PWB Interface
20. SB PWB Interface
21. SB PWB Interface
22. SB PWB Interface
23. SB 8 OF 4
24. SB 8 OF 4
25. SB Power 1
26. MT POWER CONNECTIONS
27. DE32 PCI CONNECTOR A
28. DE32 PCI CONNECTOR B
29. Memory Active Termination
30. Memory VCC Supply
31. Memory VCC Supply
32. CPU Year
33. Clock Generation
34. Clock Generation
35. Mobile Clocking
36. PWB CONNECTOR
37. TANK CONNECTOR
38. PWB CONNECTOR
39. JUMPER CONNECTOR
40. JUMPER CONNECTOR
41. TANK POWER CONTROL
42. SB MW POWER SUPPLY
43. SB FIREWIRE POST
BAR CODE LABELS / EEE #'s

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE ORG</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>353S1465</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>353S1461</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128S0094</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128S0060</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128S0093</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128S0083</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376S0448</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-7815</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-7812</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-7813</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MODULE PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE ORG</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>333S0358</td>
<td>1</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333S0350</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333S0354</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>1</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALTERNATE PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE ORG</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>157S0111</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157S0030</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128S0060</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128S0095</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376S0445</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRUCKEE, 2.33GHZ, B2, 256 VRAM, SAM, M57

- BOM GROUP: M57_COMMON4
- VRAM_256SAM
- VRAM_128SAM
- VRAM_256INF
- VRAM_128INF

TRUCKEE, 2.16GHZ, B2, 256 VRAM, SAM, M57

- BOM GROUP: M57_COMMON1
- VRAM_256SAM
- VRAM_128SAM
- VRAM_256INF
- VRAM_128INF

M57_TPM

- IC, SGRAM, GDDR3, 16MX32, 600MHZ, 136 FBGA
- IC, SGRAM, GDDR3, 16MX32, 700MHZ, 136 FBGA
- IC, SGRAM, GDDR3, 8MX32, 700MHZ, 136 FBGA

LBL, P/N LABEL, PCB, 28MM X 6 MM

- 157S0111
- 128S0060
- 376S0445

SCREENED ISL6262 FOR ISL9504

- 330UF, 2V, 6MOHM, D2
- 330UF, 2V, 9MOHM, D2

ALT ALTERNATE FOR

- 3G

ALTERNATE, COMMON, M57_COMMON1, M57_COMMON2, M57_COMMON3, M57_COMMON4, M57_DEBUG, ISL6255A, M57_NO_3G

- REF DES: C2516
- REF DES: T8900, T8950, U9000, U9050

ENET胙LOWPWR_EN, ENET_PWR_S3AC, GPU_BB_CTL

- REF DES: U8400
- REF DES: U8400
WE THROUGH THE ITP700FLEX CONNECTOR CONNECT TO PDB XDP BUFFER BOARD -- ECM * 50

CHANGE THE PULLS RESISTOR VALUE PER NAPA PLATFORM DG REV 0.9
TCK PULL DOWN THROUGH 54.9 OHM (FOLLOW UP XDP DESIGN REFERENCE)

IN
IO
IO
IO
IO
IO
IO
IO

PLACE GND VIA W/ IN 1000 MILS
ROUTE TO TP VIA AND

PLACE TESTPOINT ON

CPU_PROCHOT_L TO SMC

OUT

CPU_BSEL<2>
CPU_BSEL<0>

OUT

CPU_TEST1
CPU Vcore HF and Bulk Decoupling

- 4x 330µF, 20% 12V
- 2x 22µF 16V
- 1x 10µF, 1x 0.01µF

VCCA (CPU AVdd) Decoupling

- 16V, 20%
- 22µF
- 805
- 20%
- 6.3V
- CERM

VCCP (CPU I/O) Decoupling

- 0.1µF
- 402
- 10V
- 20%
- 2.5V

CPU Vcore VID Connections

- Resistors to allow for marking of CPU VID
- Will probably be removed before production

NOTE:

- This cap is shared between CPU and NB.
ITP TCK SIGNAL LAYOUT NOTE:
ROUTE THE TCK SIGNAL FROM ITP700FLEX CONNECTOR'S TCK PIN TO CPU'S CONNECTOR'S FBO PIN.

AND WITH RESET BUTTON

TO ICH7M SYS_RST, AND WITH SYSTEM RESET LOGIC INDICATE THAT ITP IS USING TAP I/F, NC IN 945GM CHIPSET SYSTEM.

CRITICAL
NC
NC
NC
NC
52435-2872
518S0320

CPU ITP700FLEX DEBUG SUPPORT

SCALE
NONE

DRAWING NUMBER
051-7164 03001

SYNC_DATE=(MASTER) 11 87

OF
REV.

PROPERTY OF APPLE COMPUTER, INC. THE POSSESSOR AGREES TO THE FOLLOWING NOTICE OF PROPRIETARY PROPERTY:

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY INFORMATION OF APPLE COMPUTER. INC.

NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

APPLE COMPUTER INC.

III NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY INFORMATION OF

APPLE COMPUTER INC.

NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY INFORMATION OF

APPLE COMPUTER INC.

NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY INFORMATION OF

APPLE COMPUTER INC.
Unused DAC outputs should connect to GND through 75-ohm resistors.

VCCD_LVDS must remain powered with proper decoupling. Tie VCC_TXLVDS and VCCA_LVDS to GND. If SDVO is used, leave all signals NC if LVDS is not implemented.
Place in cavity 4.7uF CERM
MIN_NECK_WIDTH=0.25 mm

0.1uF CERM

0.01uF

10uF 603

10V 20%

3200mA Max

3000mA Max

Rail Totals:

40mA Max?

2310mA Max?

1500mA Max

800mA Max

These are the power signals that leave the NB "block"

IN IN IN IN

PP3V3_S0

PP1V8_S3

PP1V5_S0_NB

GMCH VCCA_MPLL FILTER

GMCH VCC_HV BYPASS

MCH VCCA_3GBG BYPASS

MCH VCC_TXLVDS BYPASS

(MCH LVDS TRANSMITTER 2.5V PWR)

MAKE_BASE=TRUE

NO_TEST=TRUE

X5R 0.01UF

10V CERM

MIN_LINE_WIDTH=0.5 mm

1.0UH-220MA-0.12-OHM

10V

3GPLL 10uF cap should

NV sacred 0.01uf 2

TP_CRT_DDC_DATA

NC_NB_XOR_LVDS_A34 NC_NB_XOR_LVDS_A34

3X3 1210

3X3 91nH
This part is never stuffed, on the board to short or fault protection for RTC battery.
DDR2 Bypass Caps

(For return current)

DDR2 SO-DIMM Connector B

- **SMBUS_SB_SDA**: 128
- **MEM_B_DQ**: 2000
- **MEM_B_DQS_P**: 0
- **MEM_B_DQS_N**: 1
- **MEM_B_DM**: 7
- **MEM_CS_L**: 2
- **MEM_B_BS**: 1
- **MEM_B_DQ**: 0
- **MEM_B_DQ**: 8
- **MEM_B_DQ**: 48
- **MEM_B_DQ**: 60
- **MEM_B_DQ**: 61
- **MEM_B_DQ**: 53
- **MEM_B_DQ**: 50
- **MEM_B_DQ**: 57
- **MEM_B_DQ**: 56
- **MEM_B_DQ**: 46
- **MEM_B_DQ**: 45
- **MEM_B_DQ**: 30
- **MEM_B_DQ**: 26
- **MEM_B_DQ**: 17
- **MEM_B_DQ**: 18
- **MEM_B_DQ**: 12
- **MEM_B_DQ**: 0
- **MEM_B_DQ**: 7
- **MEM_B_DQ**: 6
- **MEM_B_DQ**: 5
- **MEM_B_DQ**: 4
- **MEM_B_DQ**: 3
- **MEM_B_DQ**: 2
- **MEM_B_DQ**: 1

Page Notes

Factory (thru-hole) slot

- **6.3V**: 402
- **10%**: 402
One cap for each side of every RPAK, one cap for every two discrete resistors.

Mem_B_L and DD resistors are close to 62-65M connectors.

Memory Active Termination

技术信息

文件内容为机密信息，未经Apple计算机公司书面许可，不得复制或分发。
If power inputs are not S0, MEMVTT_EN can be used to disable MEMVTT in sleep. Leave 1.8V powered in S3. Okay to turn off 5V and (NONE) (NONE) (NONE) (NONE) Power aliases required by this page:
- =PP5V_S0_MEMVTT
- =PP1V8_S0_MEMVTT
- =PP0V9_S0_MEMVTT_LDO

Memory Vtt Supply
- PP5V_S0
- MEMVTT_EN
- PP1V8_S3
- MEMVTT_VREF
- PP0V9_S0

Refer to Apple's documentation for detailed instructions.
When ENETPWR_S3AC BOMOPTION is active:

State FWPWR_EN_L PM_SLP_S4_L PM_SLP_S3BATT PM_SLP_S3BATT_L P2V5S3_EN P1V2S3_RUNSS
S0 Batt 0V 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)
G3H Batt PBUS 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S5 Batt PBUS 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S3 Batt PBUS 3.3V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S3 AC 0V 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)

G3H 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S5 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S3 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)
S0 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)

Yukon Power Control

When ENETPWR_S3 BOMOPTION is active:

State PM_SLP_S4_L PM_SLP_S3BATT PM_SLP_S3BATT_L P2V5S3_EN P1V2S3_RUNSS
G3H Batt PBUS 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S5 Batt PBUS 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S3 Batt PBUS 3.3V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S3 AC 0V 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)
S0 Batt 0V 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)
S0 AC 0V 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)

G3H 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S5 0V PBUS (3.3V OFF) 0V 0V (2.5V OFF) 0V (1.2V OFF)
S3 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)
S0 3.3V 0V (3.3V ON) 3.3V 3.3V (2.5V ON) 3.3V (1.2V ON)

Allows powering Yukon down during battery sleep to save power
Enables port power when machine is running or on AC.

Current Limit/Active Late-VG Protection

Late-VG Event Detection

Port Power Switch

Double port power when machine is running or on AC.

Budgets current (current mode of operation constant)
for 100 samples (each sample 100 ms) in weighted
as in 1.2 and the limits can vary during the period
and 1/10th of the limits. In a real-time, the device
needs to be able to detect a fault that produces possible current
spikes. Current limit has been set higher to compensate.
Page Notes

- Page 1 of 1
- Check design layout in this page.
- Additional notes here.

Late-VG Protection Power

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCES</th>
<th>CRITICAL</th>
<th>NOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termination

- Place wires to Termination FRU.

Note: The wiring schematic is not exhaustive. Additional notes and details are provided in the text.
Current Sense Calibration Circuit

- CPU Voltage Sense / Filter
- GPU Voltage Sense / Filter
- CPU Current Sense Filter
- GPU Current Sense Filter
- 1.5V 50 (NB) Current Sense Filter
- 1.05V 50 (NB) Current Sense Filter
- DCIN Current Sense Filter
- Battery Current Sense Filter

Current & Voltage Sensing

- CPU Voltage Sense
- GPU Voltage Sense
- CPU Current Sense
- GPU Current Sense
- 1.5V 50 (NB) Current Sense
- 1.05V 50 (NB) Current Sense
- DCIN Current Sense
- Battery Current Sense
If unconnected, powers up with PVIN.

Vout = 0.6V * (1 + Ra / Rb)

Vout = 2.5V * (1 + Ra / (Rb + Rc))

Vout = 2.50V (U7700 limit)

Vout = 1.205V (Switcher limit)

Continuous

σ © 2006 Apple Computer, Inc. All rights reserved.

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY
I TO MAINTAIN THE DOCUMENT IN CONFIDENCE
PROPERTY OF APPLE COMPUTER, INC. THE POSSESSOR

SHT
Vref = 3.42V * (R2a / (R1a + R2a))
Vref = 1.20V
Vth = 13.4V
Vth = (Vref / (R2b / (R1b + R2b))

Vref = 3.42V * (R2a / (R1a + R2a))
Vref = 1.20V
Vth = 13.4V
Vth = (Vref / (R2b / (R1b + R2b))
As shown, $I_{sys} \approx 4.6A$ max.
Revision History

Not to reproduce or copy it

Not to reveal or publish in whole or part

Agrees to the following

The information contained herein is the proprietary property of Apple Computer, Inc., the possessor

To maintain the document in confidence

Revision History

Sync Date = (Master)

Sync Master = (Master)

Revision History
Napa Platform Constraints

FSB (Front-Side Bus) Constraints

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Sections 4.4, 4.6.2, & 5.8.2.4

SOURCE: Napa Platform DG, Rev 0.9 (#17978), Section 6.2

NOTE: Design Guide allows closer spacing if signal lengths can be shortened.

<table>
<thead>
<tr>
<th>SPACING_RULE_SET</th>
<th>LAYER</th>
<th>LAYER</th>
<th>LAYER</th>
<th>LAYER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_DATA2MEM</td>
<td>3:1</td>
<td>SPACING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VCCSENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS2MEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_GTLREF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_85D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_70D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_45S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_2TO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_55S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSB_ADSTB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSB_DATA FSB_DSTB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSB_DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA</td>
<td>2:1</td>
<td>SPACING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DQS</td>
<td>4:1</td>
<td>SPACING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_2TO1</td>
<td>2:1</td>
<td>SPACING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LINE-TO-LINE SPACING

ON LAYER?

- = 1.5:1 SPACING
- = 2:1 SPACING
- = 3:1 SPACING
- = 4:1 SPACING

Napa Platform Instructions

MAXIMUM NECK LENGTH

MINIMUM LINE WIDTH

MINIMUM NECK WIDTH

AREA_TYPE

SPACING_RULE_SET

TABLE_SPACING_ASSIGNMENT_ITEM

SYNC_DATE=(MASTER)

DRAWING NUMBER

NOTICE OF PROPRIETARY PROPERTY

III NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

I TO MAINTAIN THE DOCUMENT IN CONFIDENCE
High-Speed I/O Interface Constraints

LVDS and TMDS pairs should be kept at least 25 mils apart.
LVDS and TMDS signals are 100-ohm +/- 10% differential impedance.

GROUND Shield recommended around VGA signals.

Video Signal Constraints

CTRL lines are 55-ohm single-ended impedance.

SOURCE: ATI Layout Guide, Rev 0.5 (DSG-216MOBRADEON-05), Sections 7 & 8.1.2.

VGA should be routed as close to 75-ohms single-ended impedance as possible.

ADDR/CTRL lines should route 35-ohms to T, then 55-ohms to each VRAM device.

SOURCE: ATI Layout Guide, Rev 0.5 (DSG-216MOBRADEON-05), Sections 7 & 8.1.2.
M9 Board-Specific Spacing & Physical Constraints

<table>
<thead>
<tr>
<th>Layer</th>
<th>Spacing Rule Set</th>
<th>Physical Type</th>
<th>Physical Type</th>
<th>Physical Type</th>
<th>Physical Type</th>
<th>Physical Type</th>
<th>Physical Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5:1 Spacing</td>
<td>4:1 Spacing</td>
<td>3:1 Spacing</td>
<td>2:1 Spacing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSB Common</td>
<td>MEM_CLK</td>
<td>MEM_PP1V8_S3</td>
<td>LVDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGA P2MM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- For "Spacing Rule Set" for FSB signals, Appendix D tables D-1 & 4-12.
- For "Spacing Rule Set" for MEM signals, Appendix D tables D-1 & 4-12.

Board Areas
- Standard: Top, Bottom

Minimum Line Width
- 0.090 mm
- 0.100 mm

Minimum Neck Width
- 0.076 mm

Maximum Neck Length
- 0.125 mm

Physical Rule Set
- Standard: Y

Table Physical Rule Item

Table Physical Assignment Item

Table Spacing Rule Item
- 0.100 mm
- 0.100 mm

Table Spacing Assignment Item

Table Spacing Rule Override
- 0.3 mm

Table Spacing Rule Head

Table Spacing Assignment Head

Table Spacing Override

Table Spacing Rule Override

Table Spacing Assignment Override

Unsupported Rule

Scale - Physical / Spacing Types
