1. All resistance values are in ohms; 0.1 watt or less.
2. All capacitance values are in microfarads.
3. All crystals & oscillator values are in hertz.

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>System Block Diagram</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Power Block Diagram</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BOM Configuration</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kit BOM Variants</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Revision History</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Functional Test - No Test</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Power Aliases</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Signal Aliases</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CPU FSB</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CPU Power & Ground</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CPU Decoupling & VID</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>eXtended Debug Port (Micro-KDP)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>MCP CPU Interface</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>MCP Memory Interface</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>MCP PCIe Interfaces</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>MCP Graphics</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MCP Sata, USB & Ethernet</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>MCP HDA, LPC & Misc</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MCP Power & Ground</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>MCP88 Memory Rail Gating</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>MCP89 GPU Core Rail Gating</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>MCP Standard Decoupling</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MCP Graphics Support</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SB Misc</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>DDR3 DRAM Channel A (0-31)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>DDR3 DRAM Channel A (32-63)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>DDR3 DRAM Channel B (0-31)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DDR3 DRAM Channel B (32-63)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>DDR BYPASSING 1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>DDR BYPASSING 2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Memory Active Termination</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>FSB/DDR3 Vref Marging</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>X3 WIRELESS CONNECTOR</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>DATA CONNECTOR</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Left I/O (LIO) Connector</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Secure Digital Card Reader</td>
<td></td>
</tr>
</tbody>
</table>

Revision History

- **07/23/2010**
 - Initial version

Notices of Proprietary Property:

- All rights reserved. No part of this document may be reproduced or copied without written consent from Apple Inc. Apple Inc. reserves the right to change the content of this document at any time without notice.

Apple Inc.

- 051-8467

www.vinafix.vn
K16 BOM Variants on following page

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>DDR3:ELPIDA_2GB</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>DDR3:MICRON_2GB</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>DDR3:HYNIX_4GB</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>DDR3:HYNIX_2GB</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>K16_DEBUG:PROD</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SMC:BLANK</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IC,FLASH,SPI,32MBIT,3.3V,86MHZ,8-SOP</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>K16_DEBUG:PVT</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAMSUNG,LVDDR3,2GBIT,9X11.5</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MICRON,LVDDR3,2GBIT,9X11.5</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,2GBIT,9X11.1</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ELPIDA,LVDDR3,2GBIT,7.5X10.6</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MICRON,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ELPIDA,LVDDR3,1GBIT,7.5X10.6</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAMSUNG,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAMSUNG,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAMSUNG,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ELPIDA,LVDDR3,1GBIT,7.5X10.6</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ELPIDA,LVDDR3,1GBIT,7.5X10.6</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ELPIDA,LVDDR3,1GBIT,7.5X10.6</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ELPIDA,LVDDR3,1GBIT,7.5X10.6</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HYNIX,LVDDR3,1GBIT,7.5X11.0</td>
<td>29602</td>
<td>CRITICAL</td>
</tr>
<tr>
<td>PART NUMBER</td>
<td>DESCRIPTION REFERENCE DES</td>
<td>CRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1073</td>
<td>K16_CMNPTS,CPU:2.13GHz,EEEE:DCWP,CAPS:TY,DDR3:MICRON_2GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1082 PCBA,MLB,2.13GHz,HY 2GB,SS CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXH,CAPS:TY,DDR3:SAMSUNG_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1075</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXD,CAPS:MU,DDR3:MICRON_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1080 PCBA,MLB,1.86GHz SA 2GB,TY CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCWH,CAPS:MU,DDR3:HYNIX_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1087 PCBA,MLB,2.13GHz MI 2GB,SS CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCX1,CAPS:SS,DDR3:MICRON_2GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1090 PCBA,MLB,1.86GHz MI 2GB,TY CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCX5,CAPS:SS,DDR3:HYNIX_2GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1068</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXV,CAPS:MU,DDR3:HYNIX_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1096</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXX,CAPS:SS,DDR3:SAMSUNG_2GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1101 PCBA,MLB,1.86GHz HY 4GB,MU CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXQ,CAPS:SS,DDR3:HYNIX_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1077 PCBA,MLB,1.86GHz MI 4GB,TY CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXR,CAPS:SS,DDR3:HYNIX_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1076 PCBA,MLB,1.86GHz MI 4GB,MU CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCX8,CAPS:SS,DDR3:HYNIX_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1081 PCBA,MLB,1.86GHz HY 2GB,SS CAP,K16</td>
<td>K16_CMNPTS,CPU:1.86GHz,EEEE:DCXN,CAPS:SS,DDR3:MICRON_4GB</td>
<td>UNICRITICAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revision History
Profo 0 (ECO #0000876215, v1.0.0, P4 change #210266, 03/16/2010)

v1.1.0 (P4 change #211539, 03/24/2010)
- 7754205 - Asked NC to DCC pass FETs to avoid glitch (pp. 7, 93).
- 7781316 - Added feedback divider and BOM tables for more VSSC loads (pp. 4, 25).
- 7754217 - Added resistors to connect TCON to DMB or MCP SMBus (pp. 4, 54, 90).
- 7754221 - Added support for DP MDP mode / FT state (pp. 8, 10, 19, 45, 50, 76, 94).
- 7754246 - Added SI pull-up to SMB_IOL to prevent leakage path (pp. 50, 59).
- 7754251 - Unstuffed BOM circuit (pp. 8).
- 7754279 - Property/page files to reduce SeekPlus warning/errors (pp. 7, 9, 12, 17, 74, 93, 108).

v2.0.0 (P4 change #211673, 03/24/2010)
- 7754626 - Changed port switch from TP20528 to TP20548 (pp. 44).
- 7883293 - Added BLACK从来没 property on R5022 to avoid side effects.

v2.1.0 (P4 change #211978, 03/26/2010)
- 7754658 - Changed DP and LCD power from supply power supply (pp. 8, 90).
- 7754685 - Changed backlight driver to E0 version (pp. 97).
- 7754694 - Added SMBUSREN property to SMBUS device (pp. 44).
- 7754695 - Added SMBUSREN property to SMBUS device (pp. 44).
- 7754696 - Added SMBUSREN property to SMBUS device (pp. 44).
- 7754697 - Added alternate PBT and unstuffed series N's on TCON I2C for now (pp. 4, 90, 108).

Power Supply:
- 7754641 - Removed alternate PBT, made some PBTs primary to other APs (pp. 4, 72, 73, 74).
- 7754642 - Reflux changes for 5.12V CNN power supply (pp. 45).
- 7754649 - A reflux changes for 5.12V CNN power supply (pp. 45).
- 7754650 - A reflux changes for 5.12V CNN power supply (pp. 45).
- 7754657 - A reflux changes for 5.12V CNN power supply (pp. 45).
- 7754660 - Changed backlight driver to non-E00 version (pp. 4, 97).

v1.3.0 (P4 change #212175, 03/30/2010)
- 7754706 - Changed HSYNC to 25 MHz bus frequency (pp. 4).
- 7764331 - Added VREF connection to BBUS alias page (pp. 15, 52).
- 7764350 - Changed VREF "SMBUS" SMBUS pull-ups from 0.12 to 2K (pp. 52).
- 7764351 - Documented SMBUS addresses for panel (pp. 52).
- 7764352 - Changed SD Card discharge R to more standard value (pp. 48).

Power Supply:
- 7754736 - Changed 5V/3.3 regulator output from 5.02V to 5.12V nominal (pp. 48).
- 7754748 - Added SDSD circuit and clarified tables/BOM tables around these parts (pp. 45).
- 7754750 - Changed OMI to OMITp tables (pp. 10-11, 14-20, 24, 31-36, 45, 61).

v2.1.0 (P4 change #212175, 03/30/2010)
- 7754649 - Changed OMI to OMITp tables (pp. 10-11, 14-20, 24, 31-36, 45, 61).

REVISION HISTORY

type: v1.1.0 (P4 change #210439, 03/04/2010)
- 7787897 - Property/page files to reduce SeekPlus warning/errors (pp. 7, 9, 12, 17, 74, 93, 108).

NOTICE OF PROPRIETARY PROPERTY:

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY PROPERTY OF APPLE COMPUTER, INC.

THE FOLLOWING AGREEMENTS TO THE HOLDING:
THE INFORMATION CONTAINED HERIN IS THE

NOTE: All page numbers are .cda, not PDF. See page 1 for .cda -> PDF mapping.
Micro2-XDP Connector

Note: This is not the standard XDP pinout.

Use with 500-0782 Adapter Flex to support chipset debug.

Direction of XDP adapter flex

Place close to CPU to minimize stub.

PE0 ports are Gen2-capable. 4 RCs: 4x, x2, x1, x1
PE1 ports are Gen1-only. 2 RCs: x1, x1

+VIO_PE_AVDD0 and +VIO_PE_DVDD0 can be GND if PE0[3:0] are not used.
+VIO_PE_AVDD1 and +VIO_PE_DVDD1 can be GND if PE0[4:5] and PE1[0:1] are not used.
NOTE: No Composite/S-Video/Component Video support on MCP89

Connect +3.3V_RGBDAC pin to GND.

Okay to float all RGB_DAC signals.

RGB DAC Disable:

TMDS: Power +VDD_IFPx at 3.3V
LVDS: Power +VDD_IFPx at 1.8V

DDC Mode Pull-downs
NOTE: DP_MODE only required pull-downs if used for
dual-mode displayport (DP++) - if unused no pulls
are necessary. If used for TMDS/NODE only then
only pull-ups are necessary.

GPIO Pull-Ups

Connect RGMII_MDIO to 10K pull-down.
All other pins can be left TP or NC.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
RGMII_COMP_VDD/_GND must remain connected as shown.
+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.
Connect RGMII_INTR to 10K pull-down (if not used as GPIO).
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD<0:3> together to 10K pull-down.
Internal MAC Disable:
Connect RGMII_RGMII to 10K pull-down.
Connect RGMII_RGMII to 10K pull-down (if not used as GPIO).
+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.
RGMII_COMP_VDD/_GND must remain connected as shown.
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD2 to 10K pull-down.
All other pins can be left TP or NC.

MCP SATA, USB & Ethernet
NOTE: "SW" rails are dynamically switched in the S0 state as needed, controlled by MCP89 GPIOs.
NO STUBS on CKE signals!

CKE must be held low to keep memory in self-refresh.

Clamps enable when MCP89 MEMVDD rail switched off.

Clamps release after MCP89 MEMVDD is up and CKEs are driven by MCP89.

Clamps are chosen for low output capacitance.

Approx. Ramp Time (VCC to 1.35V, uS): 7.91 + 0.0678 * R1 (Kohms)

Approx. Ramp Time (VCC to 1.35V, uS): 7.91 + 0.0678 * R1 (Kohms)

Gated Rail Savings: 120mW

DIMM CKE Clamps

- Q2355/Q2356 chosen for low output capacitance.
- Clamps also discharge VTT rail via termination resistor on each CKE signal on DIMM.
- Clamps release after MCP89 MEMVDD is up and CKEs are driven by MCP89.

Clamp Requirements:

- Min Ramp-Up Time: 20 uS (10% to 90%)
- Max Ramp-Up Time: 65 uS (ENABLE to 90%)
- FET Ron <= 3.8 mOhms

Loading (G driven to VCC):

- C2300 helps reduce input rail droop during Q2300 turn-on.
- C2300 helps reduce input rail droop during Q2300 turn-on.

NOTE: nVidia recommends Infineon BSC030N03MS for Q2300.

- **Ramp-Up Time:** Min: 20 uS (10% to 90%)
- Max: 65 uS (90% to 100%)
- **FET Ron:** <= 3.8 mOhms

4250 mA (OR 1.35V)

Q2300

- **Type:** N-Channel
- **Part:** STMFS4854N
- **N-Channel**
- **Rds(on):** 10 mOhms @3.2V
- **4.3 A (EDP)**

44

44

MF

560K

1%1/20W

201

R2305

Approx. Ramp Time (VCC to 1.35V, uS): 7.91 + 0.0678 * R1 (Kohms)

19 58

0.1UF

402CERM10V20%

C2305

CRITICAL

PLACE_NEAR=Q2300.9:2 mm

1206-1CERM-X5R 6.3V20%

100UF

C2300

CRITICAL

TDFN

SLG5AP031

NTUD3170NZXXG

Q2350

SOT-963

CRITICAL

PLACE_NEAR=Q2300.9:2 mm

1206-1CERM-X5R 6.3V20%

100UF

C2300

CRITICAL

TDFN

SLG5AP031

NTUD3170NZXXG

Q2355

SOT-963

CRITICAL

PLACE_NEAR=Q2300.9:2 mm

1206-1CERM-X5R 6.3V20%

100UF

C2300

CRITICAL

TDFN

SLG5AP031

NTUD3170NZXXG

Q2356

SOT-963

CRITICAL

PLACE_NEAR=Q2300.9:2 mm

1206-1CERM-X5R 6.3V20%

100UF

C2300

CRITICAL

TDFN

SLG5AP031

NTUD3170NZXXG

Q2300
Approx. Ramp Time (EN to 1V, uS): \(43.9 + 0.6943 \times C1(pF)\)

- Min Ramp-Up Time: 100 uS (10% to 90%)
- Max Ramp-Up Time: 1500 uS (ENABLE to 90%)
- FET Ron <= 2.5 mOhms

NOTE: nVidia recommends Infineon BSC020N03MS for Q2400.

- C2400 helps reduce input rail droop during Q2400 turn-on.
- MCPCORES0_VSEN_P
- MCPCORES0_VSEN_N

- Gated Rail Savings: 860mW

The NV Requirements:
- Place Near=C2400.1:1 mm
- PLACE_NEAR=C2400.2:1 mm

Critical Components:
- XW2400
- XW2401
- SI4838BDY
- SLG5AP033

NOTE: Infineon recommends ROHS4BBMS2 for Q2400.

MCP89 GFX Core Rail Gating

- PPVCORE_S0_MCPGSBFET
- PPVCORE_SW_MCP_GFX
- S0_PP_MCP_GFX
- PP5V_S0_MCPFSBFET
- SLG5AP033
- XW2400
- XW2401
- SI4838BDY
- UC405
- UC405
- SLG5AP033

MCPGFX_GATE

- PPVCORE_S0_MCPGSBFET
- PPVCORE_SW_MCP_GFX
- S0_PP_MCP_GFX
- PP5V_S0_MCPFSBFET

PPVCORE_S0_MCPGSBFET

- PPVCORE_S0_MCPGSBFET
- PP5V_S0_MCPFSBFET
- S0_PP_MCP_GFX
- PP5V_S0_MCPFSBFET

PPVCORE_SW_MCP_GFX

- PPVCORE_S0_MCPGSBFET
- PP5V_S0_MCPFSBFET
- S0_PP_MCP_GFX
- PP5V_S0_MCPFSBFET

SLG5AP033

- SLG5AP033
- XW2400
- XW2401
- SI4838BDY
- UC405
- UC405
- SLG5AP033

XW2400

- XW2400
- XW2401
- SI4838BDY
- UC405
- UC405
- SLG5AP033

SI4838BDY

- SI4838BDY
- XW2400
- XW2401
- UC405
- UC405
- SLG5AP033

UC405

- UC405
- UC405
- SLG5AP033
- XW2400
- XW2401
- SI4838BDY

SLG5AP033

- SLG5AP033
- XW2400
- XW2401
- SI4838BDY
- UC405
- UC405

UC405

- UC405
- UC405
- SLG5AP033
- XW2400
- XW2401
- SI4838BDY

SI4838BDY

- SI4838BDY
- XW2400
- XW2401
- UC405
- UC405
- SLG5AP033

UC405

- UC405
- UC405
- SLG5AP033
- XW2400
- XW2401
- SI4838BDY

SLG5AP033

- SLG5AP033
- XW2400
- XW2401
- SI4838BDY
- UC405
- UC405

www.vinafix.vn
JEDEC recommends 30 Ohm term to VTT for CS, CKE, ODT and 36 Ohm for BA, A, RAS, CAS, WE.
K4805 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4805 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4804 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4803 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4802 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4801 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4800 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4797 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4796 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4795 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4794 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4793 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4792 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4791 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4790 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4789 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4788 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!

R4787 is for rail discharge. GL137 may cycle PMOS to recover from card error. DEF duration is 1ms and reset voltage must be less than 0.5V for at least 10us per spec. Keep this net short!
NOTE: Unused pins have "SMC_Pxx" names. Unused pins designed as outputs can be left floating, those designated as inputs require pull-ups.
SMC Reset “Button”, Supervisor & AVREF Supply

SMC Crystal Circuit

System (Sleep) LED Circuit

Debug Power “Buttons”

SMC Aliases

SMC Pull-ups

SMC Pull-downs

Unused Pins

SMC Support

Apple Inc.

NOTICE OF PROPRIETARY PROPERTY: This document or its contents may contain confidential and proprietary information owned by Apple Inc., including trade secrets, and is intended solely for the use of Apple Inc., its authorized agents, and its authorized contractors. This document or its contents may not be disclosed to any third party without the express written consent of Apple Inc. or its authorized agents. Any unauthorized disclosure or use is strictly prohibited and may have severe legal consequences.
Another slave port is available at 0x10/0x11, probably not used.

MCP89 SMBus "0" Connections

SMC "0" SMBus Connections

SMC "Battery A" SMBus Connections

SMC "Management" SMBus Connections

Left I/O Board

Internal DP

Battery

Trackpad

Copyright © 2010 Apple Inc. All rights reserved.
FAN CONNECTOR
NOTE: If HOLD* is asserted, ROM will ignore SPI cycles.

NOTE: SPI ROM

SYNC_MASTER=K99_MLB
SYNC_DATE=04/08/2010

==PP3V3_S5_ROM==

SPI_ROM

MCP89 SPI Frequency Select:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SPI_MOSI</th>
<th>SPI_CLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0 MHz</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31.2 MHz</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>41.7 MHz</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>62.5 MHz</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: 42 & 62 MHz use FAST_READ command.
Vin = 5.0V
F = 400KHz

CRITICAL POLY-TANT 150UF 6.3V

PLACE_NEAR = L7220.1:3mm

X7R16V 10%
C7250
P5VS3_VFB1-R 805

CRITICAL PCMC063T-SM L7220

PLACE_NEAR = L7220.2:3mm

R7221
R7220 201 MF 1/20W 1%

C7240 62UF XW7222 11V ELEC 20%

MIN_NECK_WIDTH = 0.2 mm
MIN_LINE_WIDTH = 0.6 mm DIDT = TRUE

MF-LF 52

C7200
C7236 0.01UF 5% 201 1%

52 52

1UF 402 16V X5R 10%
Q7220 HWSON-8

GATE_NODE = TRUE DIDT = TRUE
MIN_NECK_WIDTH = 0.2 mm
MIN_LINE_WIDTH = 0.6 mm

MIN_LINE_WIDTH = 0.6 mm DIDT = TRUE
SWITCH_NODE = TRUE

58 58

P3V3S5_PGOOD
P5VS3_PGOOD

58 58

IN

C7201

5% R7237 20K

NO STUFF 201 1/20W 1%

100PF 1UF 402 16V X5R 10%

58 58

5.3A MAX OUTPUT Vout = 3.3V

= PP3V3_S5_REG

SYNC_DATE = 04/08/2010

Apple Inc.
NOTE: Pulled up to 5V on DP connector page.

FET spec'ed for 1.5V Vgs operation.

6.3V 0.1UF 10% X5R C9300

6.3V 0.1UF 10% X5R C9301

SSM6N37FEAPE SOT563 SIGNAL_MODEL=DP_AUXCH_FET Q9302

SSM6N37FEAPE SOT563 SIGNAL_MODEL=DP_AUXCH_FET Q9300

CKPLUS_WAIVE=PdifPr_badTerm SIGNAL_MODEL=DP_AUXCH_FET

SYNC_DATE=04/08/2010 SYNCHRONIZED=K99_MLB

External DisplayPort Support
CPU / FSB Net Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Min Width</th>
<th>Max Width</th>
<th>Min Neck Width</th>
<th>Max Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSB_55S</td>
<td>100 Ohm</td>
<td>55 Ohm</td>
<td>25 Mil</td>
<td>>50 Mil</td>
</tr>
<tr>
<td>FSB_1X</td>
<td>27 OhmSE</td>
<td>27 OhmSE</td>
<td>25 Mil</td>
<td>>50 Mil</td>
</tr>
</tbody>
</table>

CPU Signal Constraints

<table>
<thead>
<tr>
<th>Name</th>
<th>Min Width</th>
<th>Max Width</th>
<th>Min Neck Width</th>
<th>Max Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU_55S</td>
<td>55 OhmSE</td>
<td>55 OhmSE</td>
<td>25 Mil</td>
<td>>50 Mil</td>
</tr>
<tr>
<td>CPU_8MIL</td>
<td>8 Mil</td>
<td>8 Mil</td>
<td>25 Mil</td>
<td>>50 Mil</td>
</tr>
</tbody>
</table>

MCP FSB COMP Signal Constraints

<table>
<thead>
<tr>
<th>Name</th>
<th>Min Width</th>
<th>Max Width</th>
<th>Min Neck Width</th>
<th>Max Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP_CPU_COMP</td>
<td>55 OhmSE</td>
<td>55 OhmSE</td>
<td>25 Mil</td>
<td>>50 Mil</td>
</tr>
<tr>
<td>MCP_CPU_COMP_VCC</td>
<td>55 OhmSE</td>
<td>55 OhmSE</td>
<td>25 Mil</td>
<td>>50 Mil</td>
</tr>
</tbody>
</table>

FSB Clock Constraints

<table>
<thead>
<tr>
<th>Name</th>
<th>Min Width</th>
<th>Max Width</th>
<th>Min Neck Width</th>
<th>Max Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSB_CLK_MCP</td>
<td>15 Ohm</td>
<td>15 Ohm</td>
<td>10 Mil</td>
<td>>25 Mil</td>
</tr>
<tr>
<td>FSB_CLK_ITP</td>
<td>15 Ohm</td>
<td>15 Ohm</td>
<td>10 Mil</td>
<td>>25 Mil</td>
</tr>
</tbody>
</table>

Source Information

- MCP89 Interface DG (DG-04625-001_v0.9), Section 2.1.4
- Intel Design Guide allows closer spacing if signal lengths can be shortened.
- Intel Design Guide recommends FSB signals be routed only on internal layers.
Digital Video Signal Constraints

- R/G/B signals should be matched as close as possible and < 10 inches.
- 50-ohm from first to second termination resistor.

Analog Video Signal Constraints

- CRT signals single-ended impedance varies by location:
 - 50-ohm from first to second termination resistor.
 - 75-ohm from output of three-pole filter to connector (if possible).
- CRT signals should be matched as close as possible and ~10 inches.

NEED PCIe Gen1/Gen2 notes!

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.3

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.4.2

Max trace length: 12 inches for SATA Gen1/Gen2, TBD for SATA Gen3.

SATA intra-pair matching should be 1 ps.

DisplayPort/TMDS intra-pair matching should be 5 ps. Inter-pair matching should be within 100 ps.

Max trace length: LVDS 10 inches, DP 8.5 inches.

NOTE: NV DG recommends 90 ohm differential for LVDS, but cable/display assume 100 ohm.
LPC Bus Constraints

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USB 2.0 Interface Constraints

<table>
<thead>
<tr>
<th>Layer</th>
<th>USB Min/Max</th>
<th>Line-to-Line Spacing</th>
<th>Physical Rule Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMBus Interface Constraints

<table>
<thead>
<tr>
<th>Layer</th>
<th>SMB Min/Max</th>
<th>Line-to-Line Spacing</th>
<th>Physical Rule Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HD Audio Interface Constraints

<table>
<thead>
<tr>
<th>Layer</th>
<th>HD Min/Max</th>
<th>Line-to-Line Spacing</th>
<th>Physical Rule Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIO Signal Constraints

<table>
<thead>
<tr>
<th>Layer</th>
<th>SIO Min/Max</th>
<th>Line-to-Line Spacing</th>
<th>Physical Rule Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPI Interface Constraints

<table>
<thead>
<tr>
<th>Layer</th>
<th>SPI Min/Max</th>
<th>Line-to-Line Spacing</th>
<th>Physical Rule Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCP89 Net Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>Min/Max</th>
<th>Net Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC SMBus Net Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>NET_ID</td>
<td>PROPERTIES</td>
<td>VALUE</td>
</tr>
<tr>
<td>SMBUS_MGMT_SDA</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_MGMT_SCL</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_A_S3_SCL</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_A_S3_SDA</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_B_S0_SCL</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_B_S0_SDA</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_B_SA_SDA</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_B_SA_SCL</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_A_SA_SDA</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_A_SA_SCL</td>
<td>PHYSICAL_SPACING</td>
<td>0.1 MM</td>
</tr>
</tbody>
</table>

| SMBus Charger Net Properties | | |
|-----------------------------|-------------------|
| NET_ID | PROPERTIES | VALUE |
| CHGR_CSI | 1TO1_DIFFPAIR | |
Graphics Net Properties

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Type</th>
<th>Position</th>
<th>Net type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP_90D</td>
<td>ELECTRICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_EXT_ML_N<3..0></td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_EXT_AUX_CH_C_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_EXT_ML_F_P<3..0></td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_INT_AUX_CH_C_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_INT_ML_C_P<1..0></td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_INT_ML_P<1..0></td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Audio Net Properties

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Type</th>
<th>Position</th>
<th>Net type</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB_LT1_N</td>
<td>ELECTRICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB_TPAD_CONN_N</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB_TPAD_N</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB_USB_90D</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB_USB_90D</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Net Properties

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Type</th>
<th>Position</th>
<th>Net type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_POWER</td>
<td>ELECTRICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP1V5R1V35_S3</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VTTSENSE_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMVP6_CS_R_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMVP6_CS_R_N</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPUVTTS0_CS_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP_THMDIODE_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLBR_THMDIODE_N</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAMTHMSNS_D2_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAMTHMSNS_D2_N</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISNS_CSREG_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISNS_AIRPORT_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISNS_AIRPORT_N</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISNS_1V5_S3_P</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Misc Net Properties

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Type</th>
<th>Position</th>
<th>Net type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX98300_R_P</td>
<td>ELECTRICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TypeInfo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD CARD READER LAYOUT RELAXATIONS

<table>
<thead>
<tr>
<th>SD CARD READER LAYOUT</th>
<th>Type</th>
<th>Position</th>
<th>Net type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCP Fanout Constraint Relaxations

<table>
<thead>
<tr>
<th>MCP_Fanout</th>
<th>Constraint Type</th>
<th>Method</th>
<th>Position</th>
<th>Net type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice: This page contains proprietary information and should not be reproduced or copied. Reproduction or disclosure of this page, in whole or part, is strictly prohibited without written consent from Apple Inc.
Capacitor Vendor Tables for Acoustics

1UF 0402

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Critical</th>
<th>Vendor</th>
<th>Notes</th>
<th>Bom Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0626</td>
<td>1</td>
<td>SS_CAP_1UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0627</td>
<td>1</td>
<td>SS_CAP_1UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0628</td>
<td>1</td>
<td>SS_CAP_1UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0629</td>
<td>1</td>
<td>SS_CAP_1UF</td>
<td></td>
<td>MURATA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2UF 0402

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Critical</th>
<th>Vendor</th>
<th>Notes</th>
<th>Bom Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0630</td>
<td>1</td>
<td>SS_CAP_2_2UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0631</td>
<td>1</td>
<td>SS_CAP_2_2UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0632</td>
<td>1</td>
<td>SS_CAP_2_2UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0633</td>
<td>1</td>
<td>SS_CAP_2_2UF</td>
<td></td>
<td>MURATA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10UF 0603

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Critical</th>
<th>Vendor</th>
<th>Notes</th>
<th>Bom Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0640</td>
<td>1</td>
<td>SS_CAP_10UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0641</td>
<td>1</td>
<td>SS_CAP_10UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22UF 0603

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Critical</th>
<th>Vendor</th>
<th>Notes</th>
<th>Bom Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0650</td>
<td>1</td>
<td>SS_CAP_22UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0651</td>
<td>1</td>
<td>SS_CAP_22UF</td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice of Proprietary Property
Apple Inc.

Sync Date: 06/01/2010
Sync Master: K16_MLB

www.vinafix.vn