J11 MLB PIB SCHEMATIC

2.6.0

02/23/12

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>2</td>
<td>K21_MLB</td>
</tr>
<tr>
<td>3</td>
<td>J30_MLB</td>
</tr>
<tr>
<td>4</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>5</td>
<td>K21_MLB</td>
</tr>
<tr>
<td>6</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>7</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>8</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>9</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>10</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>11</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>12</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>13</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>14</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>15</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>16</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>17</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>18</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>19</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>20</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>21</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>22</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>23</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>24</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>25</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>26</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>27</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>28</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>29</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>30</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>31</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>32</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>33</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>34</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>35</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>36</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>37</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>38</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>39</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>40</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>41</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>42</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>43</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>44</td>
<td>J13_MLB</td>
</tr>
<tr>
<td>45</td>
<td>J13_MLB</td>
</tr>
</tbody>
</table>

Product Safety Requirements:

PCB, UL Recognized, MIL-120-C Temp. Rating and V-0 Flame Rating per UL 746a & UL 94.

PCB to be PC/12-12%

PCB P/N:

PCB Material Designation:

In 110-2 Temp. Rating and V-0 Flame Rating.

Not to be Reproduced or Copied.

Possessor Agreement:

All Rights Reserved.

Apple Inc.
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DES</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>085-3937</td>
<td>1</td>
<td>J11 MLB DEVELOPMENT BOM</td>
<td>J11_DEVEL:ENG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-9089</td>
<td>1</td>
<td>CMN PTS,PCBA,MLB,J11</td>
<td>J11_CMNPTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar Code Labels / EEEE #'s

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DES</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>051-9276</td>
<td>2.7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROM Variants

<table>
<thead>
<tr>
<th>ROM NUMBER</th>
<th>ROM DSOR</th>
<th>ROM OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEEE:F27H</td>
<td>[EEEE_F27H]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
<tr>
<td>EEEE:F27J</td>
<td>[EEEE_F27J]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
<tr>
<td>EEEE:F27K</td>
<td>[EEEE_F27K]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
<tr>
<td>EEEE:F27G</td>
<td>[EEEE_F27G]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
<tr>
<td>EEEE:F27C</td>
<td>[EEEE_F27C]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
<tr>
<td>EEEE:F27D</td>
<td>[EEEE_F27D]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
<tr>
<td>EEEE:F27F</td>
<td>[EEEE_F27F]</td>
<td>1</td>
</tr>
<tr>
<td>825-7670 CRITICAL</td>
<td>LABEL,TEXT,MLB,K21/K78</td>
<td></td>
</tr>
</tbody>
</table>

Sub-BOMs

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DES</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
</table>

K78 ROM Variants

Apple Inc. 051-9276 2.7.0

NOTICE OF PROPRIETARY PROPERTY: THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF APPL E INC. AND IS BEING PROVIDED FOR INFORMATION PURPOSES ONLY UNDER LICENSE OR CONFIDENTIALITY AGREEMENT. REPRODUCTION OR DISCLOSURE TO OTHER THAN THE COMPANY'S EXPRESSLY AUTHORIZED PERSONNEL IS PROHIBITED.
Alternate Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>ROM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmable Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>ROM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRAM CFG CHART

```
A1
A2
A3
A4
A5
A6
A7
A8
```

Module Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>ROM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PD Module Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>ROM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DDR3

- SAMSUNG_4GB
- HYNIX_4GB

J11_DEBUG

- PVT
- ENG

Reference Descriptions

- ALTERNATE
- BKLT:ENG
- XDP_CONN
- XDP_PCH
- DDRVREF_DAC
- VREFDQ:M1_M3
- VREFCA:LDO_DAC
- S0PGOOD_ISL
- S3_S0_LED
- VCCIOISNS_ENG
- AIRPORTISNS_ENG
- HDDISNS_ENG
- LCDBKLTISNS_ENG

Notes

- Murata alt to Samsung
- Fairchild alt to Siliconix
- Toko alt to NEC inductor
- Diodes alt to Toshiba
- Rohm alt to Toshiba

Other

- IC,SMC,PIB,J11
- CRITICAL
- BOOTROM_BLANK
- TBTROM:BLANK
- TBTROM:PROG
- SMC_BLANK
- ELPIDA_8GB
- ELPIDA_4GB
- PCH_C1TDP
- PCH_C1
- PCH_C0
- IVB,QC9C,QS,L1,1.9,17W,2+2,1.15,4M,ULVBG
- IVB,QC9E,QS,L1,1.7,17W,2+2,1.05,3M,ULVBG
- IVB,QC9B,QS,L1,2.0,17W,2+2,1.15,4M,ULVBG
- IVB,QBP8,ES2,K0,1.5,17W,2+2,0.95,4M,ULVB
If HPD is disabled while eDP interface is still enabled, connect it to CPU VCCIO via a 10-kOhm pull-up resistor on the motherboard.

Intel Doc 467283 ChiefRiver Platform design guild rev0.71 section 2.2.12 recommendation. Therefore, an inverting level shifter is required on the motherboard.

CFG [4]: eDP ENABLE/DISABLE 1 = DISABLED 0 = ENABLED

These can be placed close to J2500 and only for debug access.
Redundant to pull-down on audio page

NO STUFF

5%

1/20W

BLC_I2C_MUX_SEL

TP_PCH_STRP_ESI_L

PCH_GPIO54

BLC_GPIO

AUD_I2C_INT_L

TBT_PWR_REQ_L

JTAG_GMUX_TMS

PCH_CLK33M_PCIOUT

TP_PCH_STRP_BBS1

TP_PCI_CLK33M_OUT3

PLT_RESET_L

USB3_EXTA_TX_P

USB3_EXTC_TX_N

USB3_EXTA_TX_N

USB3_EXTD_RX_P

USB3_EXTA_RX_P

USB3_EXTB_RX_N

USB3_EXTA_RX_N

BJ27

BF26

BL27

BF30

BB28

BF26

AD10

AR42

AR40

AN42

AN40

BH16

BK16

BH20

BK24

F40

F45

C41

A47

D44

F46

G46

C45

C47

C48

F46

G46

C45

C47

C48

A47

D44

F45

C41

F40

K30

W40

D24

B24

AT4

D20

E3

E49

H48

J43

H48

J43

G45

F45

F40

F46

G46

C45

C47

C48

A47

D44

F45

C41

F40

K30

W40

D24

B24

AT4

D20
Systems with no chip-down memory should pull all 4 RAMCFG GPIO high.

Systems with chip-down memory should pull all 4 RAMCFG GPIO high and pull-opens on another page and set straps per software.

NOTE: TCK from PCH is Push-Pull CMOS
NOTE: TDO from CR is Push-Pull CMOS

JTAG Isolation due to glitch in and out of sleep

TBT_PWR_EN goes high for JTAG Programming

This has internal pull up and should not pulled low.

THE SIGNAL IS INTENDED FOR FIRMWARE HUB AND WE ARE NOT USING IT.
must deassert ISOLATE_CPU_MEM_L and then generate a valid reset cycle on CPU_MEM_RESET_L.

When HIGH: CPU 1.5V remains powered in S3, VTT follows S0 rails, MEM_RESET_L not isolated.

WHEN LOW: CPU 1.5V follows S0 rails, VTT ensures clean CKE transition, MEM_RESET_L isolated.
A16/A15 FOR 2G/8G MODE ONLY
C01 IS FOR 2G DQIP BANK CONTROL
Right USB Port A

USB Port Power Switch

Current limit per port (R4600): 2.18A min / 2.63A max

Mojo SMC Debug Mux

APN: 514-0819

External A USB3 Connector

SYNC_MASTER=J13_MLB
SYNC_DATE=10/06/2011
LIO CONNECTOR
998-4617 (HIROSE 3.0mm RCPT)

NOTICE OF PROPRIETARY PROPERTY:

I agree to:

I. To maintain this document in confidence.

II. Not to reveal or publish it in whole or part.

III. Not to reproduce or copy it.

LIO CONNECTORS

Apple Inc.

Page 12 of 109

CPU Proximity Sensor

Read Address: 0x99
Write Address: 0x98

Placement note:
To connect Die Sensor, stuff R5550 & R5551, no stuff R5540 & R5541
To connect Proximity Sensor, stuff R5540 & R5541, no stuff R5550, R5551

Detect TBT Die Temperature

Placement note:
Place U5510 under CPU

Replacing caps with 100K PD on ISENSE SMC inputs

TBT Die

Sync Date: 08/30/2011
Sync Master: J13_MLB

Thermal Sensors

Apple Inc.

Notice of Proprietary Property:

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY PROPERTY OF APPLE INC.

The Possessor agrees to the following:

I. To maintain this document in confidence
II. Not to reproduce or copy it
III. Not to reveal or publish it in whole or part

Apple Inc.

051-9278 2
A.T.

NOTICE OF PROPRIETARY PROPERTY:
This information is proprietary in nature and contains important business, strategic and proprietary information and is protected by copyright law.
This information is confidential and may not be used or disclosed except as expressly authorized in writing by Apple Inc.

Page Title
Sheet
Version
Drawing Number
Revision
Branch
Size

4 5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4
FAN CONNECTOR

NOTICE OF PROPRIETARY PROPERTY:

1. TO MAINTAIN THIS DOCUMENT IN CONFIDENCE
2. NOT TO REVEAL OR PUBLISH IT IN WHOLE OR PART
3. NOT TO REPRODUCE OR COPY IT

Component List:

- **R5661**: 100k Ω 1/20W
- **R5660**: 4.7k Ω 1/20W
- **Q5660**: SSM3K15FV SOD-VESM-HF
- **5% 1/20W MF201**: 47k
- **5% 1/20W MF201**: 100k

Other Elements:

- **SYNC_DATE=12/13/2010**
- **SYNC_MASTER=K21_MLB**
- **051-9276 2.7.0 56 OF 109**
- **47 OF 12**
To detect Keyboard backlight, do not close I2C_SCL, I2C_SDA.
If LOW, keyboard backlight present.
If HIGH, keyboard backlight not present.
SMC always working. KBDLED only grounded when KB BL flex connected.
If LOW, keyboard backlight present.
If HIGH, keyboard backlight not present.
These parts 1 to 4 are grounded on keyboard backlight fuse.

SYNC_MASTER=K21_MLB
SYNC_DATE=12/13/2010
PAGE BRANCH REVISION DRAWING NUMBER
IPD / KBD Backlight
Apple Inc.

NOTICE OF PROPRIETARY PROPERTY:
THE INFORMATION CONTAINED HEREIN IS THE
PROPRIETARY PROPERTY OF APPLE INC.
THE POSSESSOR AGREES TO THE FOLLOWING:
I TO MAINTAIN THIS DOCUMENT IN CONFIDENCE
II NOT TO REPRODUCE OR COPY IT
III NOT TO REVEAL OR PUBLISH IT IN WHOLE OR PART
IV ALL RIGHTS RESERVED

PAGE 57 OF 109
SIZE D
57 OF 72

PAGE 48 OF 72
SIZE D
2.7.0
If LVDDR3_HM10 is turned ON, switch R2821 & R7971 back to the original value for 1.5V DDR unless 1V5R1V35_SSW is turned ON.
CPU=IV Bridge ULV, AXG=GT2

PHASE 1

AXG PHASE
CPU VCCIO (1.05V S0) Regulator

CPU VCCIO (1.05V S0) Power Supply

Apple Inc.

OCP = 25.6A

Vout = 0.5V * (1 + Ra / Rb)

OCP = R7641 x 8.5uA / R7640

Vout = 1.05V

21A Max Output

f = 300 kHz

2.7.0

SYNC_DATE=09/01/2011

NOTICE OF PROPRIETARY PROPERTY:

All rights reserved.

THE INFORMATION CONTAINED HEREIN IS THE

POSSESSOR AGREES TO THE FOLLOWING:

PAGE TITLE

III NOT TO REVEAL OR PUBLISH IT IN WHOLE OR PART

IV ALL RIGHTS RESERVED

PAGE BRANCH

REV.

DRAWING NUMBER

SHEET

D A C B D A C
Cougar Point requires JTAG pull-ups to be powered at 1.05V when SUS suspend well is active.

1.05V SUS LDO

Pull-ups (3) must be 51 ohms to support XDP (not required in production).
70mA is required to support pull-ups. Alternative is strong voltage dividers (200/100) to 3.3V, which burns 100mW in all S-states.

Max Current = 0.020A
Vout = 1.05V
Freq = 1 MHz

1.5V S0 LDO

Max Current = 0.35A
Vout = 1.5V

1.8V S0 Regulator

Vout = 0.8V * (1 + Ra / Rb)
Vout = 1.794V
Max Current = 1.8A

1.05V S0 LDO

Vout = 1.05V
Max Current = 0.02A

Misc Power Supplies

Apple Inc. 051-9276 2
NOTICE OF PROPRIETARY PROPERTY:
The Information contained herein is the proprietary property of Apple Inc.
All Rights Reserved.
CPU Signal Constraints

| Area_Type | Net_Name | Min_Shift | Max_Shift | Spacing_Mode | Corner_1 | Corner_2 | Referenced_Dielectric | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE
|------------|--------------|-----------|-----------|---------------|----------|----------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| PCIE_CPU_TX | CPU_27P4S | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE

Parity Interface Constraints

| Area_Type | Net_Name | Min_Shift | Max_Shift | Spacing_Mode | Corner_1 | Corner_2 | Referenced_Dielectric | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE
|------------|--------------|-----------|-----------|---------------|----------|----------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| PCIE_CPU_TX | CPU_27P4S | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE

PCI-Express Interface Constraints

| Area_Type | Net_Name | Min_Shift | Max_Shift | Spacing_Mode | Corner_1 | Corner_2 | Referenced_Dielectric | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE
|------------|--------------|-----------|-----------|---------------|----------|----------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| PCIE_CPU_TX | CPU_27P4S | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE

CPU Net Properties

| Area_Type | Net_Name | Min_Shift | Max_Shift | Spacing_Mode | Corner_1 | Corner_2 | Referenced_Dielectric | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE
|------------|--------------|-----------|-----------|---------------|----------|----------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| PCIE_CPU_TX | CPU_27P4S | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE

CPU Constraints

| Area_Type | Net_Name | Min_Shift | Max_Shift | Spacing_Mode | Corner_1 | Corner_2 | Referenced_Dielectric | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE
|------------|--------------|-----------|-----------|---------------|----------|----------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| PCIE_CPU_TX | CPU_27P4S | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | Note: CPU_CLK and CPU_TX can be connected back to TABLE_SPACING_RULE

Note: DisplayPort tables are on Page 103
SATA Interface Constraints

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATA_MUX_SSD_D2R</td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
<tr>
<td></td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
</tbody>
</table>

USB 2.0 Interface Constraints

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB3_PCH_TX</td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
<tr>
<td></td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
</tbody>
</table>

USB 3.0 Interface Constraints

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB3_PCH_TX</td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
<tr>
<td></td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
</tbody>
</table>

UART Interface Constraints

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART</td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
<tr>
<td></td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
</tbody>
</table>

PCH Net Properties

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH_Net Properties</td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
<tr>
<td></td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
</tbody>
</table>

PCH Constraints 1

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH Constraints 1</td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
<tr>
<td></td>
<td>Source: Source: Calpella Platform Design Guide for Ibex Peak M (DG-398905-398905_v1.5), Section 3.8, NET_SPACING_TYPE1 NET_SPACING_TYPE2 SATA3_PCH_RX SATA3_PCH_TX _RX SATA3_PCH_TX _TX SATA3_PCH_TX</td>
</tr>
</tbody>
</table>
System Clock Signal Constraints

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLL_CLK</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>DLL_RESET</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

HD Audio Interface Constraints

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA_RST_L</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>HDA_SYNC</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

SMBus Interface Constraints

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBUS_PCH_CLK</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>SMBUS_PCH_DATA</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

LPC Bus Constraints

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC_CLK33M</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>LPC_45S</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

SPI Interface Constraints

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI_CLK</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>SPI_MOSI</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

Chipset Net Properties

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA_RST_R</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>HDA_SYNC_R</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

Clock Net Properties

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Xmin</th>
<th>Xmax</th>
<th>Ymin</th>
<th>Ymax</th>
<th>Spacing</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff Primary Gap</th>
<th>Diff Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK_25M_45S</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>CLK_SLOW</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>80_OHM</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

Thunderbolt/DP Connector Signal Constraints

<table>
<thead>
<tr>
<th>SPACING RULE SET</th>
<th>NET SPACING TYPE 1</th>
<th>NET SPACING TYPE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBT_DP_80D</td>
<td>TBT_DP_RX</td>
<td>TBT_DP_TX</td>
</tr>
<tr>
<td>TBT_DP_RX</td>
<td>TBT_DP_TX</td>
<td>TBT_DP_RX</td>
</tr>
<tr>
<td>TBT_DP_TX</td>
<td>TBT_DP_RX</td>
<td>TBT_DP_TX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TBT_SPI

<table>
<thead>
<tr>
<th>LAYER</th>
<th>LAYER</th>
<th>LAYER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBT_DP_RX</td>
<td>TBT_DP_TX</td>
<td>TBT_DP_TX</td>
</tr>
</tbody>
</table>

LINE-TO-LINE SPACING

- **ALLOW ROUTE**
- **MAXIMUM NECK LENGTH**
- **MINIMUM NECK WIDTH**
- **DIFFPAIR PRIMARY GAP**
- **DIFFPAIR NECK GAP**

PHYSICAL RULE SET

- **=80_OHM_DIFF**
- **=80_OHM_SE**
- **=45_OHM_SE**
- **=4x_DIELECTRIC**
- **=6x_DIELECTRIC**

Thunderbolt/DP Net Properties

<table>
<thead>
<tr>
<th>Thunderbolt/DP Net Properties</th>
<th>Position</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thunderbolt IC Net Properties

<table>
<thead>
<tr>
<th>Thunderbolt IC Net Properties</th>
<th>Position</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only used on dual-port hosts.
Single-ended Physical Constraints

<table>
<thead>
<tr>
<th>Board Area</th>
<th>Layer</th>
<th>AREA_TYPE</th>
<th>PHYSICAL_RULE_SET</th>
<th>NET_SPACING_TYPE1</th>
<th>NET_SPACING_TYPE2</th>
<th>AREA ?</th>
<th>AREA ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL2, ISL11, ISL3, ISL4, ISL5, ISL6, ISL7, ISL8, ISL9, ISL10, ISL11, BOTTOM</td>
<td>TOP</td>
<td>ISL3, ISL10</td>
<td>TOP, BOTTOM</td>
<td>50_OHM_SE</td>
<td>45_OHM_SE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TOP, ISL2, ISL3, ISL4, ISL5, ISL6, ISL7, ISL8, ISL9, ISL10, ISL11</td>
<td>TOP</td>
<td>ISL2, ISL11</td>
<td>TOP, BOTTOM</td>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TOP, ISL2, ISL3, ISL4, ISL5, ISL6, ISL7, ISL8, ISL9, ISL10, ISL11</td>
<td>TOP</td>
<td>ISL2, ISL11</td>
<td>TOP, BOTTOM</td>
<td>27P4_OHM_SE</td>
<td>45_OHM_SE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TOP, ISL2, ISL3, ISL4, ISL5, ISL6, ISL7, ISL8, ISL9, ISL10, ISL11</td>
<td>TOP</td>
<td>ISL2, ISL11</td>
<td>TOP, BOTTOM</td>
<td>27P4_OHM_SE</td>
<td>40_OHM_SE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TOP, ISL2, ISL3, ISL4, ISL5, ISL6, ISL7, ISL8, ISL9, ISL10, ISL11</td>
<td>TOP</td>
<td>ISL2, ISL11</td>
<td>TOP, BOTTOM</td>
<td>27P4_OHM_SE</td>
<td>35_OHM_SE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TOP, ISL2, ISL3, ISL4, ISL5, ISL6, ISL7, ISL8, ISL9, ISL10, ISL11</td>
<td>TOP</td>
<td>ISL2, ISL11</td>
<td>TOP, BOTTOM</td>
<td>27P4_OHM_SE</td>
<td>35_OHM_SE</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Differential Pair Physical Constraints

<table>
<thead>
<tr>
<th>Board Area</th>
<th>Layer</th>
<th>NET_SPACING_TYPE1</th>
<th>NET_SPACING_TYPE2</th>
<th>AREA ?</th>
<th>AREA ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL3, ISL10</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
</tbody>
</table>

Spacing Constraints

<table>
<thead>
<tr>
<th>Board Area</th>
<th>Layer</th>
<th>NET_SPACING_TYPE1</th>
<th>NET_SPACING_TYPE2</th>
<th>AREA ?</th>
<th>AREA ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL3, ISL10</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>TOP, ISL2, ISL11</td>
<td>TOP</td>
<td>ISL4, ISL9</td>
<td>TOP, BOTTOM</td>
<td>45_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
</tbody>
</table>

PCB Rule Definitions

Apple Inc. 851-282

NOTICE OF PROPRIETARY PROPERTY:

The possessor agrees to the following:

- To maintain this document in confidence
- Not to reproduce or copy it
- Not to reveal or publish it in whole or part

PROPRIETARY PROPERTY OF APPLE INC.

REVISION: 2.7.0

SYNC_DATE=01/11/2012

DRAWING NUMBER: 051-9276

SHEET: 119 OF 119

PCB Rule Definitions