PROCESSORS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>ALTERNATE FOR</th>
<th>PART NUMBER</th>
<th>REF DES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALIFIED

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REF DESIGNATOR(S)</th>
<th>BOM OPTION</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>VALUE/VOLT./WATT.</th>
<th>TOL.</th>
<th>PART #</th>
<th>PACKAGE</th>
<th>DEVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ASICS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>ALTERNATE FOR</th>
<th>PART NUMBER</th>
<th>REF DES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALIFIED

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REF DESIGNATOR(S)</th>
<th>BOM OPTION</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>VALUE/VOLT./WATT.</th>
<th>TOL.</th>
<th>PART #</th>
<th>PACKAGE</th>
<th>DEVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MISC PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REF DESIGNATOR(S)</th>
<th>BOM OPTION</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>VALUE/VOLT./WATT.</th>
<th>TOL.</th>
<th>PART #</th>
<th>PACKAGE</th>
<th>DEVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ALTERNATES

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>ALTERNATE FOR</th>
<th>PART NUMBER</th>
<th>REF DES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE ITEMS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REF DESIGNATOR(S)</th>
<th>BOM OPTION</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>VALUE/VOLT./WATT.</th>
<th>TOL.</th>
<th>PART #</th>
<th>PACKAGE</th>
<th>DEVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

NOTICE OF PROPRIETARY PROPERTY

The information contained herein is the proprietary property of Apple Computer, Inc. The possession or disclosure of this information is subject to the following restrictions:

I. To maintain the information in confidence,
II. Not to reveal or publish in whole or part,
III. Not to reproduce or copy it.

The information contained herein is the proprietary property of Apple Computer, Inc. The possession or disclosure of this information is subject to the following restrictions:

I. To maintain the information in confidence,
II. Not to reveal or publish in whole or part,
III. Not to reproduce or copy it.

TABLE ITEMS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REF DESIGNATOR(S)</th>
<th>BOM OPTION</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>VALUE/VOLT./WATT.</th>
<th>TOL.</th>
<th>PART #</th>
<th>PACKAGE</th>
<th>DEVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
2.5V VOLTAGE REGULATOR

NOTE:
- OUTPUT=2.5V TXR FRAMESHIFTER.
- VOLTAGE=2.62VDC
- PEAK CURRENT OF TOTAL RAILS
- 12.68A WITH DIMM TERMINATION
- 9.24A WITHOUT DIMM TERMINATION

IRU3037CS
VREF=1.25VDC
VOUT=VREF*(R903+R905)/R905=2.62VDC

R903_P2
U900_GATE_L
U900_FEEDBACK
U900_VC_R
U900_VC
Q901_GATE

R904_P2
U900_GATE_H
U900_COMP
Q902_DRAIN
review the latest SMU specification

NOTE: Some primary and alternate functions may be required pull-ups that are not.

NOTE: A 100pF capacitor to the SMU AVSS is recommended.

NOTE: All analog inputs to SMU should have SMU_VREF as the same signal or use a pull-up circuit, but be sure that this will not affect other analog inputs such as AC adapter ID.

NOTE: All scaling inputs to SMU should have a 100pF capacitor to the SMU AVSS signal. Some of these capacitors are provided on this page.

NOTE: Some primary and alternate functions may require pull-ups that are not.

NOTE: Before using the latest SMU specification, ensure that all pull-ups are provided on another page.

NOTE: Read section 3.1 in the SMU manual.
NOTE:

Set output=1.5VDC for U3LITE Core

VOUT=VREF*(R2203+R2205)/R2205=1.53VDC

IRU3037CS VREF=1.25VDC

Set output=1.5VDC for U3LITE core

Set output=1.5VDC for U3LITE core

Copyright Notice:

Not to reveal or publish in whole or part

Not to reproduce or copy it

Agrees to the following

Property of Apple Computer, Inc. The possessor

The information contained herein is the proprietary

Notice of proprietary property

Size: 300mm

Drawing number

Rev.

Sheet

U3LITE Core Power

Supplier:

Apple Computer Inc.
other Shasta supplies. Power Sequencing:

- Different drive timing is appropriate PCI bus voltage and spec for 5V vs. 3.3V operation.

NOTE: PCI pads use the VIO supply to meet
- _PPVCORE_PWRON_SB (1.2V)
- _PP2V5_PWRON_SB
- _PP3V3_PWRON_SB
- _PPPCI64_PWRON_SB (to 5V or 3.3V)

Shasta max (est 06/30/03) current:

- I/O 3.3V - 3.3V - 220 mA (770 mW)
- DIGITAL - 1.2V - 950 mA (1175 mW)

For PCI_AD<31..0>

For PCI_AD<63..32>

- VIO2
- VDDP_KL
- VDDO25
- GND
- POWER
NOTE: CONNECT VR5001 PIN 9 TO GND PLANE.

VOUT=VREF*(R5004+R5005)/R5005=1.60 (OR 1.40) VDC

SET OUTPUT=1.40V FOR NV34
SET OUTPUT=1.60V FOR NV18B

VOUT=VREF=IRU3037CS VREF=1.25VDC
VOUT=VREF=(R5004+R5005)/R5005=1.60 (OR 1.40) VDC

PEAK CURRENT OF TOTAL RAILS 7.2A WITH NV34

NOTE:

PEAK CURRENT OF TOTAL RAILS 0.95A

VOUT=VREF=IRU3037CS VREF=1.25VDC
VOUT=VREF=(R5004+R5005)/R5005=1.60 (OR 1.40) VDC

GRAPHICS VREGS

NOTE: SET OUTPUT=1.5V

SC4215 VREF=0.8VDC

VOUT=VREF=(R5015+R5017)/R5017=1.5 VDC

PEAK CURRENT OF TOTAL RAILS 0.95A

NOTE:

PEAK CURRENT OF TOTAL RAILS 0.95A

VOUT=VREF=(R5015+R5017)/R5017=1.5 VDC

MIN_LINE_WIDTH=25MIL

MIN_NECK_WIDTH=10MIL

PEAK CURRENT OF TOTAL RAILS 0.95A

VOUT=VREF=(R5015+R5017)/R5017=1.5 VDC

MR2003 10UF 1206 CERM 6.3V 20%

C5009 1800UF TH-KZJ 6.3V 20%

C5052 10UF 1206 CERM 6.3V 20%

C5051 0.1UF 603 X7R 16V 20%

R5050 10K 402 MF 1/16W 1%

C5053 330UF SM-1 6.3V 20%

R5051 2.8K 402 MF 1/16W 1%

R5052 10K 402 MF 1/16W 1%

C5054 0.1UF 603 X7R 16V 20%

R5053 1K 402 MF 1/16W 1%

C5055 0.1UF 603 X7R 16V 20%

R5054 10K 402 MF 1/16W 1%

C5056 0.1UF 603 X7R 16V 20%

R5055 10K 402 MF 1/16W 1%
www.Vinafix.vn
Shasta HyperTransport

MOS

NOTICE OF PROPRIETARY PROPERTY

NEC PROPRIETARY INFORMATION

COPYRIGHT 1999 NEC CORPORATION

THIS DOCUMENT OR ANY PORTION THEREOF MAY NOT BE COPIED, DUPLICATED, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE WRITTEN CONSENT OF NEC CORPORATION."
SAME CONNECTORS & PINOUT AS

Q37 HYPERTRANSPORT BETWEEN GOLEM AND K2
ALL RESISTOR PACKS ARE 47 Ohm 1/16W 5%

PLACE CLOSE TO SHAFTA

AD<27> IS IDSEL FOR USB
AD<17> IS IDSEL FOR AIRPORT
SATA data pairs is 100 ohms.
Primary Max Sep: 9 mils inner
Length Tolerance: 50 mils
Line To Line: 15 mils

Page Notes

SATA: SATA

Net Spacing Type: SATA
Note: Design differential impedance for SATA data pair is 100 ohms.