BOM Variants (continued on CSA 6)

<table>
<thead>
<tr>
<th>BOM NUMBER</th>
<th>BOM NAME</th>
<th>BOM OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>639-3628</td>
<td>639-3619</td>
<td>639-2980</td>
</tr>
<tr>
<td>639-2825</td>
<td>639-3384</td>
<td>639-3380</td>
</tr>
<tr>
<td>639-3379</td>
<td>085-4776</td>
<td>725-1621</td>
</tr>
</tbody>
</table>

Part Numbers
- PCBA, 2.7G, 16G_HYN, VRAM_SAM, MLB_KEPLER, D2, DYW5
- PCBA, 2.6G, 8G_HYN, VRAM_SAM, MLB_KEPLER, D2, DRF4

Module Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DSC</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567</td>
<td>1</td>
<td>A Module</td>
<td>REF1</td>
<td>CRITICAL</td>
<td>BASE_BOM</td>
</tr>
<tr>
<td>890123</td>
<td>2</td>
<td>B Module</td>
<td>REF2</td>
<td>CRITICAL</td>
<td>BASE_BOM</td>
</tr>
<tr>
<td>345678</td>
<td>3</td>
<td>C Module</td>
<td>REF3</td>
<td>CRITICAL</td>
<td>BASE_BOM</td>
</tr>
</tbody>
</table>

Programmables

- BASE_BOM, CPU_IVY: 2.3GHZ, FB_2G_SAMSUNG, EEEE:DY3W, DEVEL_BOM, RAM_2G_HYNIX_1600
- CRITICAL

DRAM VREF Configs
- DRAM VREF: VREF=VCC_H, VREF=L, VREF=L, VREF=L

DRAM SPD Straps

<table>
<thead>
<tr>
<th>BOM GROUP</th>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE_BOM</td>
<td>1234567</td>
<td>1</td>
<td>A Module SPD Straps</td>
<td>ALL</td>
<td>BASE_BOM</td>
</tr>
</tbody>
</table>

DEVELOPMENT/BASE BOM

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567</td>
<td>1</td>
<td>A Module Development</td>
<td>CRITICAL</td>
<td>BASE_BOM</td>
</tr>
</tbody>
</table>

Supplemental Information

- Panasonic alt to TDK
- Cyntec alt to Vishay
- Pericom eDP MUX

www.vinafix.vn
<table>
<thead>
<tr>
<th>BOM Number</th>
<th>BOM Name</th>
<th>BOM Options</th>
<th>Description</th>
<th>Reference Des</th>
<th>Critical</th>
<th>BOM Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>639-3383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3445</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-2818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-2820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-2823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-2819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-3631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All parts are critical.

Keeping for PRQ

Elipda DQ'd

BOM Variants (continued from CSA 5)

Bar Code Labels / EEEE #’s (continued from CSA 5)
This connection is to support the same.

Intel is investigating processor driven VREF_DQ generation.
VAXG DECOUPLING

- Intel recommendation: 1x 330uF, 8x 10uF 0603, 10x 1uF 0402
- Apple implementation: 1x 330uF, 8x 10uF 0603, 10x 1uF 0402

PLACEMENT_NOTE (C1734-C1735):
- Place near inductors on bottom side.

PLACEMENT_NOTE (C1726-C1731):
- Place close to U1000 on bottom side

PLACEMENT_NOTE (C1758-C1762):
- CPU VCCSA DECOUPLING
- Local recommendation: 1x 330uF, 8x 10uF 0603, 10x 1uF 0402
- Apple implementation: 1x 330uF, 8x 10uF 0603, 10x 1uF 0402

CPU VCCSA DECOUPLING

- Local recommendation: 1x 330uF, 8x 10uF 0603, 10x 1uF 0402
- Apple implementation: 1x 330uF, 8x 10uF 0603, 10x 1uF 0402
Systems with no chip-down memory should pull all 4 RAMCFG GPIOs high.

Systems with chip-down memory should add pull-downs on another page and set straps per software.

Note: TDO from CR is Push-Pull CMOS
PCH SIGNALS

XDP SIGNALS

PCB/SPP Signal Isolation Notes:
- Initially, stuff both 33 and 0 ohms and validate whether it is functional in that state, mix and match options.
- *Input* non-XDP signals require pull.
- *Output* PC/SPP signals require pull.

R2527, R253, R259s and R259s should be placed where signal path needs to switch between route from PCH to 2527S and path to non-XDP signal destination.

CPU Micro2-XDP

NOTE: This is not the standard XDP plane. Use with 921-0132 Adapter Flex to support optional debug.

CPU & PCH XDP
The circuit below handles CPU and VTT power during S0->S3->S0 transitions, as well as isolating the CPU's SM_DRAMRST# output from the SO-DIMMs when necessary.

ISO|ATE_CPU_MEM L GPIO state during S3<->S0 transitions determines behavior of signals.

WHEN HIGH: CPU 1.5V remains powered in S3, VTT follows S0 rails, MEM_RESET_L not isolated.
WHEN LOW: CPU 1.5V follows S0 rails, VTT ensures clean CKE transition, MEM_RESET_L isolated.

PM_MEM_PWRGD pull-up to CPU VTT rail is on CPU page

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE USE</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140345</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>PP1V5_S3_MEMRESET</td>
</tr>
<tr>
<td>1140373</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>PP5V_S3_MEMRESET</td>
</tr>
</tbody>
</table>

1V5 S0 "PGOOD" for CPU

MEMVTT Clamp
Ensures CKE signals are held low in S3

NOTE: In the event of a S3->S5 transition ISOLATE_CPU_MEM L will still be asserted on next S5->S0 transition. Rails will power-up as if from S3, but MEM_RESET_L will not properly assert. Software must deassert ISOLATE_CPU_MEM_L and then generate a valid reset cycle on CPU_MEM_RESET_L.
NOTE: Must not enable more than two SO-DIMM margining buffers at once or Vref source may be overloaded.

Power alias required by this page:
- VREFCA_LDO_DAC
- VREFDQ_LDO_DAC
- VREFDQ_M1_DAC

Signal aliases required by this page:
- =PPDDR_S3_MEMVREF
- =PPVTT_S3_DDR_BUF
- =PP3V3_S3_VREFMRGN

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)

VREFCA:LDO_DAC
VREFDQ:LDO_DAC
VREFDQ:M1_M3
VREFDQ:M1_DAC

BI
IN
IN
IN

SYNC_MASTER=D2_KEPLER
SYNC_DATE=01/13/2012

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.3 mm

VOLTAGE=0.75V
VOLTAGE=0.75V

RES,MTL FILM,332,1%,0402,SM,LF
RES,MTL FILM,0,5%,0402,SM,LF

CRITICAL
CRITICAL

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)

VREFCA:LDO_DAC
VREFDQ:LDO_DAC
VREFDQ:M1_M3
VREFDQ:M1_DAC

BI
IN
IN
IN

SYNC_MASTER=D2_KEPLER
SYNC_DATE=01/13/2012

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.3 mm

VOLTAGE=0.75V
VOLTAGE=0.75V

RES,MTL FILM,332,1%,0402,SM,LF
RES,MTL FILM,0,5%,0402,SM,LF

CRITICAL
CRITICAL

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)

VREFCA:LDO_DAC
VREFDQ:LDO_DAC
VREFDQ:M1_M3
VREFDQ:M1_DAC

BI
IN
IN
IN

SYNC_MASTER=D2_KEPLER
SYNC_DATE=01/13/2012

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.3 mm

VOLTAGE=0.75V
VOLTAGE=0.75V

RES,MTL FILM,332,1%,0402,SM,LF
RES,MTL FILM,0,5%,0402,SM,LF

CRITICAL
CRITICAL

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)

VREFCA:LDO_DAC
VREFDQ:LDO_DAC
VREFDQ:M1_M3
VREFDQ:M1_DAC

BI
IN
IN
IN

SYNC_MASTER=D2_KEPLER
SYNC_DATE=01/13/2012

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.3 mm

VOLTAGE=0.75V
VOLTAGE=0.75V

RES,MTL FILM,332,1%,0402,SM,LF
RES,MTL FILM,0,5%,0402,SM,LF

CRITICAL
CRITICAL

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)

VREFCA:LDO_DAC
VREFDQ:LDO_DAC
VREFDQ:M1_M3
VREFDQ:M1_DAC

BI
IN
IN
IN

SYNC_MASTER=D2_KEPLER
SYNC_DATE=01/13/2012

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.3 mm

VOLTAGE=0.75V
VOLTAGE=0.75V

RES,MTL FILM,332,1%,0402,SM,LF
RES,MTL FILM,0,5%,0402,SM,LF

CRITICAL
CRITICAL

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)

VREFCA:LDO_DAC
VREFDQ:LDO_DAC
VREFDQ:M1_M3
VREFDQ:M1_DAC

BI
IN
IN
IN

SYNC_MASTER=D2_KEPLER
SYNC_DATE=01/13/2012

MIN_NECK_WIDTH=0.2 mm
MIN_LINE_WIDTH=0.3 mm

VOLTAGE=0.75V
VOLTAGE=0.75V

RES,MTL FILM,332,1%,0402,SM,LF
RES,MTL FILM,0,5%,0402,SM,LF

CRITICAL
CRITICAL

NOTE: CPU DAC output step sizes:
- 7.69mV / step @ output
- +3.4mA - -3.4mA (- = sourced)
- 0.000V - 1.501V (0x00 - 0x74)
- 0.300V - 1.200V (+/- 450mV)
- 0.75V (DAC: 0x3A)
For unused port, pull CONFIG1, CONFIG2, LSRX, HPD and CIO_SEL low (10k). All other port signals can be NC.
Note: All labels have "SMC," name. Unused pins designed as outputs can be left floating.
Unused pins designated as inputs require pull-ups.
Keyboard Backlight Driver & Detection

To detect keyboard backlight, one will

1. Assert and read SMC_SYS_KBDLED
2. IF HIGH, keyboard backlight not present
3. IF LOW, keyboard backlight present

To detect Keyboard backlight, SMC will

1. Read SMC_SYS_KBDLED
2. IF HIGH, keyboard backlight present
3. IF LOW, keyboard backlight not present
NOTE: If HOLD* is asserted, ROM will ignore SPI cycles.

SPI ROM

SPIROM_USE_MLB = PP3V3_SUS_ROM
SPI_MLB_MOSI
SPI_MLB_CS_L
SPI_WP_L
SPI_MLB_MISO
SPI_MLB_CLK

ROM will ignore SPI cycles.
1.8V S0 Regulator

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DESC</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7724</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expression:

\[
V_{out} = 0.8V \times (1 + \frac{R_a}{R_b})
\]

1.05V SUS LDO

- Max Current = 4A
- Freq = 1 MHz

1.5V S0 Regulator

Expression:

\[
V_{out} = 0.8V \times (1 + \frac{R_a}{R_b})
\]

1.5V S0 LDO (RIO)

Expression:

\[
V_{out} = 0.8V \times (1 + \frac{R_a}{R_b})
\]

Notes:

- 1.5V S0 LDO (RIO) uses dividers (200/100) to 3.3V Sus, which burns 100mW in all S-states.
- Over 1.5V to compensate for flex loss.
- Panther Point-M requires JTAG pull-ups to be powered at 1.05V in Sus.
- 70mA is required to support pull-ups. Alternative is strong voltage.
- Max Current = 0.5A

Other Details:

- **Part Number:** U7720
- **Description:** 1.05V SUS LDO
- **Reference:** C7741
- **Value:** 1UF
- **Voltage:** 6.3V
- **Tolerance:** 10%
- **QTY:** 2

Misc Power Supplies

Apple Inc. 051-9589 4.18.0

Notice of Proprietary Property:

- Apple Inc. and its suppliers retain all right, title, and interest in and to the Apple applications contained herein. You may not copy, reproduce, or modify any application in any manner.

Reference:

- **U7720**
- **MFG:** U7720
- **Vout:** 1.05V
- **THRM:** 0201-MUR
- **1.0UF**
- **6.3V**
- **MF-LF X5R 20%**
- **PART NUMBER:** 0201-MUR
- **DESCRIPTION:** 1.0UF
- **VOLTAGE:** 6.3V
- **TOLERANCE:** 10%
- **QTY:** 2

General Notes:

- **MIN LINE WIDTH:** 0.2 mm
- **MIN LINE WIDTH:** 0.6 mm
- **VOLTAGE:** 1.8V
- **MIN LINE WIDTH:** 0.4 mm

References:

- **1.8V S0 Regulator**
- **1.05V SUS LDO**
- **1.5V S0 Regulator**
- **1.5V S0 LDO (RIO)**
- **Misc Power Supplies**

Additional Information:

- **Figure:** PP1V8_S0_P1V5_LDO
- **Reference:** C7724
- **Value:** 1000PF
- **Voltage:** 70
- **NP0-C0G**

Contact:

www.vinafix.vn
3.3V/HV Power MUX

For 12V systems:

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTN</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9631</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9632</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9633</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9634</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thunderbolt Connector B

- TBT: TX_1 (0-18.9V)
- TBT: TX_2 (0-18.9V)
- TBT: TX_3 (0-18.9V)
- TBT: TX_4 (0-18.9V)
- TBT: RX_1 (0-18.9V)
- TBT: RX_2 (0-18.9V)
- TBT: RX_3 (0-18.9V)
- TBT: RX_4 (0-18.9V)

4.16.0

051-5680 0

www.vinafix.vn
CPU Rail Sequencing

Note: 1V8 may not be required for Kepler if there is no LVDS.

Power Sequencing EG/PCH S0

Place R9910 - R9917 close to U8000.
Place R9920 - R9927 close to U1000.

PCIE Test Structures (For Lab Use)

PEG_R2D_P<0> = P3V3GPU_MISC_EN
PEG_R2D_P<4> = P1V35FB_EN
PEG_R2D_P<7> = P3V3GPU_EN

PEG_D2R_P<0> = EG_RAIL1_EN
PEG_D2R_P<4> = EG_RAIL3_EN
PEG_D2R_P<7> = EG_RAIL5_EN
PEG_D2R_P<7> = P1V5S3RS0_RAMP_DONE
PEG_D2R_N<0> = TP_DDRREG_PGOOD
PEG_D2R_N<4> = TP_P1V5S3RS0_RAMP_DONE
PEG_D2R_N<7> = MAKE_BASE=TRUE

GPU_VCORE_EN = P1V05_GPU_EN
GPU_FB_PGOOD = P1V05_S0GPU_PGOOD
GPU_PGOOD3 = PP1V8_GPU_FET
GPU_PGOOD1 = PP3V3_S0_PWRCTL
GPU_PGOOD2 = PM_ALL_GPU_PGOOD
GPU_PGOOD4 = CPUIMVP_AXG_PGOOD

Note: NO PU ON 3V3 AND 1V8 PGOODS SINCE THEY ARE SYNTHETIC.
Some signals require 27.4-ohm single-ended impedance. Most CPU signals with impedance requirements are 50-ohm single-ended.
Memory Bus Constraints

MEM_DATA2DATA
- DQ/DQS/A/BA/cmd signal spacing is 4x dielectric, CLK is 5x dielectric.

DDR3 (Memory Down):
- **MEM_DATA2MEM**
- **MEM_CMD2MEM**
- **MEM_CMD2CMD**
- **MEM_CLK2MEM**
- **MEM_2OTHER**

Memory Net Properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>Property</th>
<th>Min. Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAYER</td>
<td>85_OHM_DIFF</td>
<td>25 MILS</td>
</tr>
<tr>
<td>LAYER</td>
<td>50_OHM_SE</td>
<td>16 MILS</td>
</tr>
<tr>
<td>LAYER</td>
<td>40_OHM_SE</td>
<td>25 MILS</td>
</tr>
</tbody>
</table>

Memory Bus Spacing Group Assignments

MEM_DATA2DATA
- **MEM_DQS**
- **MEM_85D**
- **MEM_50S**
- **MEM_40S**

MEM_37S
- **MEM_DATA2DATA**

DDR3 (Memory Down):
- DQ signals should be matched within 5.68m of associated DQS pair.
- DQS inter-pair matching should be within 7.12m, no inter-pair matching required.
- DQS to clock matching should be within 1.83m.
- Clock inter-pair matching should be within 5.68m.
- A/SP/CE signals should be matched within 4.58m.

Memory Constraints

SYNC_DATE=01/13/2012

www.vinafix.vn
Physical Rule Set

<table>
<thead>
<tr>
<th>Source</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HR Platform Design Guide, Tables 191, 193</td>
<td></td>
</tr>
</tbody>
</table>

USB 2.0 Interface Constraints

<table>
<thead>
<tr>
<th>Source</th>
<th>Source: HR Platform Design Guide, Tables 191, 193</th>
</tr>
</thead>
</table>

SATA Interface Constraints

<table>
<thead>
<tr>
<th>Source</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HR Platform Design Guide, Tables 191, 193</td>
<td></td>
</tr>
</tbody>
</table>

Digital Video Signal Constraints

<table>
<thead>
<tr>
<th>Source</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HR Platform Design Guide, Tables 191, 193</td>
<td></td>
</tr>
</tbody>
</table>

System Clock Signal Constraints

<table>
<thead>
<tr>
<th>Source</th>
<th>Source: HR Platform Design Guide, Tables 191, 193</th>
</tr>
</thead>
</table>

NOTE: 25MHz system clocks very sensitive to noise.

Spacing Rule Set

Clock Net Properties

NOTE: 25MHz system clocks very sensitive to noise.

<table>
<thead>
<tr>
<th>Source</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CR SFF Platform Design Guide V0.7, Table 4-211, 1X1</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Min Width</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>SMBUS_SMC_3_SDA</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_3_SCL</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_5_SDA</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_5_SCL</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_1_S0_SDA</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_1_S0_SCL</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_2_S3_SDA</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_2_S3_SCL</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_0_S0_SDA</td>
<td>0.1 MM</td>
</tr>
<tr>
<td>SMBUS_SMC_0_S0_SCL</td>
<td>0.1 MM</td>
</tr>
</tbody>
</table>

SMBus Charger Net Properties

- **CHGR_CSI_P**
- **CHGR_CSI_N**
- **CHGR_CSO_P**
- **CHGR_CSO_N**
Physical Rule Set

- **GDDR5_45SE**
- **GDDR5_EDC**
- **HDMI_90D**
- **DP_85D**

Line-to-line Spacing
- **8x**
- **5x Dielectric**

Weight
- **45_OHM_SE**
- **90_OHM_DIFF**

Maximum Neck Length
- **80_OHM_DIFF**
- **90_OHM_DIFF**

Minimum Neck Width
- **80_OHM_DIFF**

Spacing Rule Set
- **GDDR5_EDC**
- **HDMI**

Layer
- **LAYER**
- **LAYER**

Table Spacing Rule Item

Electrical Constraint Set

Digital Video Signal Constraints

Electrical Constraint Item

GDDR5 Frame Buffer Signal Constraints

Table Physical Rule Item

Sheet

Drawing Number

Size

Apple Inc.

Inv. All Rights Reserved

Apple Inc.
Memory Constraint Relaxations

Additional diffpair width/gap through BGA fanout areas (95-ohm diff)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Area Type</th>
<th>Diffpair</th>
<th>Neck Width</th>
<th>Gap Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA</td>
<td></td>
<td></td>
<td>0.20 mm</td>
<td></td>
</tr>
</tbody>
</table>

Project Specific Constraints

The information contained herein is the notice of proprietary property. All rights reserved. Do not reveal or publish it in whole or part.