1. All resistance values are in ohms; 0.1 W max +/- 5%.

Table of Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Reference</th>
<th>Part Number</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schematic/PCB #’s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
K99 POWER SYSTEM ARCHITECTURE

Need to update!!!
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-1022</td>
<td>1</td>
<td>K99_BOOMEDM1</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1023</td>
<td>1</td>
<td>K99_BOOMEDM2</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1024</td>
<td>1</td>
<td>K99_BOOMEDM3</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1025</td>
<td>1</td>
<td>K99_BOOMEDM4</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1026</td>
<td>1</td>
<td>K99_BOOMEDM5</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1027</td>
<td>1</td>
<td>K99_BOOMEDM6</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1028</td>
<td>1</td>
<td>K99_BOOMEDM7</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-1029</td>
<td>1</td>
<td>K99_BOOMEDM8</td>
<td>MICRON_2GB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRAM CFG CHART

- **Part 1:**
 - PART NUMBER | QTY | DESCRIPTION | REFERENCE | CRITICAL | BOM OPTION
 - 001-1022 | 1 | K99_BOOMEDM1 | MICRON_2GB | | |
 - 001-1023 | 1 | K99_BOOMEDM2 | MICRON_2GB | | |
 - 001-1024 | 1 | K99_BOOMEDM3 | MICRON_2GB | | |
 - 001-1025 | 1 | K99_BOOMEDM4 | MICRON_2GB | | |
 - 001-1026 | 1 | K99_BOOMEDM5 | MICRON_2GB | | |
 - 001-1027 | 1 | K99_BOOMEDM6 | MICRON_2GB | | |
 - 001-1028 | 1 | K99_BOOMEDM7 | MICRON_2GB | | |
 - 001-1029 | 1 | K99_BOOMEDM8 | MICRON_2GB | | |

- **Part 2:**
 - PART NUMBER | QTY | DESCRIPTION | REFERENCE | CRITICAL | BOM OPTION
 - 001-1030 | 1 | K99_BOOMEDM9 | MICRON_2GB | | |
 - 001-1031 | 1 | K99_BOOMEDM10 | MICRON_2GB | | |
 - 001-1032 | 1 | K99_BOOMEDM11 | MICRON_2GB | | |
 - 001-1033 | 1 | K99_BOOMEDM12 | MICRON_2GB | | |
 - 001-1034 | 1 | K99_BOOMEDM13 | MICRON_2GB | | |
 - 001-1035 | 1 | K99_BOOMEDM14 | MICRON_2GB | | |
 - 001-1036 | 1 | K99_BOOMEDM15 | MICRON_2GB | | |
 - 001-1037 | 1 | K99_BOOMEDM16 | MICRON_2GB | | |

NOT TO REPRODUCE OR COPY IT

NOT TO MAINTAIN THIS DOCUMENT IN CONFIDENCE
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE DES</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>341T0262</td>
<td>1</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>341T0263</td>
<td>1</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335S0610</td>
<td>1</td>
<td>U6100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155S0329</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155S0457</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0673</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0671</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107S0075</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104S0018</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104S0023</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152S0586</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152S0516</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152S0874</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K99_MISC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOM Configuration

Apple Inc. 051-8379 4.4.0
Notice of Proprietary Property:
This document contains information that is owned by Apple Inc.

I certify that the information in this document is intended for use only with the specific device identified.

II THERE IS NO FREE DATA IN THIS DOCUMENT.

III NOT TO REVEAL OR PUBLISH IT IN WHOLE OR PART

IV NOT TO REPRODUCE OR COPY IT

V TO MAINTAIN THIS DOCUMENT IN CONFIDENCE
CPU VCore HF and Bulk Decoupling

<table>
<thead>
<tr>
<th>Layout Note</th>
<th>Place opposite side of CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>C1200</td>
</tr>
<tr>
<td>Critical</td>
<td>C1201</td>
</tr>
<tr>
<td>Critical</td>
<td>C1202</td>
</tr>
<tr>
<td>Critical</td>
<td>C1203</td>
</tr>
<tr>
<td>Critical</td>
<td>C1204</td>
</tr>
<tr>
<td>Critical</td>
<td>C1205</td>
</tr>
<tr>
<td>Critical</td>
<td>C1206</td>
</tr>
<tr>
<td>Critical</td>
<td>C1207</td>
</tr>
<tr>
<td>Critical</td>
<td>C1208</td>
</tr>
<tr>
<td>Critical</td>
<td>C1209</td>
</tr>
</tbody>
</table>

CPU VCore VID Connections

<table>
<thead>
<tr>
<th>VCCA (CPU AVdd) Decoupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place C1290 close to CPU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VCCP (CPU I/O) Decoupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place C1293 close to CPU</td>
</tr>
</tbody>
</table>

CRITICAL Notes

- Place M1 on opposite side of CPU
- Place C1289-1290 close to CPU side
- Place C1291-1292 close to pin 84 of CPU0

VCCP (CPU AVdd) DECOUPLING

- Place C1290 close to CPU

VCCP (CPU I/O) DECOUPLING

- Place C1290 close to CPU

Notice of Proprietary Property:

This document is the proprietary property of Apple Computer, Inc. It is to be maintained in confidence, not reproduced or copied in whole or part, and not to be revealed or published in whole or part.

Apple Inc.

Drawing Number Size:

051-8379 4.4.0

Sheet Page Rev:

12 OF 110

www.vinafix.vn
Micro2-XDP Connector

NOTE: This is not the standard XDP pinout.
Use with X60-0742 Adapter Flex to support chipset debug.

Direction of XDP adapter flex

Please place J1300 within 1" of board edge with odd-numbered pins facing edge. Avoid any tall components between J1300 and edge.

NOTE: XDP pinout is not the standard.

Use with 920-0782 Adapter Flex to support chipset debug.

PE0 ports are Gen2-capable. 4 RCs: 4x, x2, x1, x1

PE1 ports are Gen1-only. 2 RCs: x1, x1

+VIO_PE_AVDD0 and +VIO_PE_DVDD0 can be GND

If PE0[3:0] are not used, +VIO_PE_AVDD1 and +VIO_PE_DVDD1 can be GND

If PE0[4:5] and PE1[0:1] are not used, +VIO_PLL_HVDD can be GND

2 RCs: x1, x1

Connect RGMII_RESET* to 10K pull-down.
Connect RGMII_MDIO to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD<0:3> together to 10K pull-down.
Connect RGMII_INTR to 10K pull-down (if not used as GPIO).
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD2 to 10K pull-down.
Connect RGMII_RXD1 to 10K pull-down.
Connect RGMII_RXD0 to 10K pull-down.
Connect RGMII_RXD3 to 10K pull-down.
Connect RGMII_RXD<1> to 10K pull-down.
Connect RGMII_RXD<3> to 10K pull-down.
Connect RGMII_RXD<2> to 10K pull-down.
Connect RGMII_COMP_VDD to 10K pull-down.
Connect RGMII_COMP_GND to 10K pull-down.
Connect RGMII_TXD3 to 10K pull-down.
Connect RGMII_TXD2 to 10K pull-down.
Connect RGMII_TXD0 to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD<2> to 10K pull-down.
Connect RGMII_TXD<0> to 10K pull-down.
Connect RGMII_TXD<1> to 10K pull-down.
Connect RGMII_TXD<3> to 10K pull-down.
Connect RGMII_TXD<5> to 10K pull-down.
Connect RGMII_TXD<6> to 10K pull-down.
Connect RGMII_TXD<7> to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_COMP_VDD/_GND must remain connected as shown.
+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.
Connect RGMII_INTR to 10K pull-down (if not used as GPIO).
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD<0:3> together to 10K pull-down.
Connect RGMII_INTR/GPIO_35 to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_RXD2 to 10K pull-down.
Connect RGMII_RXD1 to 10K pull-down.
Connect RGMII_RXD0 to 10K pull-down.
Connect RGMII_RXD3 to 10K pull-down.
Connect RGMII_RXD<1> to 10K pull-down.
Connect RGMII_RXD<3> to 10K pull-down.
Connect RGMII_RXD<2> to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD3 to 10K pull-down.
Connect RGMII_TXD2 to 10K pull-down.
Connect RGMII_TXD0 to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD<2> to 10K pull-down.
Connect RGMII_TXD<0> to 10K pull-down.
Connect RGMII_TXD<1> to 10K pull-down.
Connect RGMII_TXD<3> to 10K pull-down.
Connect RGMII_TXD<5> to 10K pull-down.
Connect RGMII_TXD<6> to 10K pull-down.
Connect RGMII_TXD<7> to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_COMP_VDD/_GND must remain connected as shown.
+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.
Connect RGMII_INTR to 10K pull-down (if not used as GPIO).
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD<0:3> together to 10K pull-down.
Connect RGMII_INTR/GPIO_35 to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_RXD2 to 10K pull-down.
Connect RGMII_RXD1 to 10K pull-down.
Connect RGMII_RXD0 to 10K pull-down.
Connect RGMII_RXD3 to 10K pull-down.
Connect RGMII_RXD<1> to 10K pull-down.
Connect RGMII_RXD<3> to 10K pull-down.
Connect RGMII_RXD<2> to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD3 to 10K pull-down.
Connect RGMII_TXD2 to 10K pull-down.
Connect RGMII_TXD0 to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD<2> to 10K pull-down.
Connect RGMII_TXD<0> to 10K pull-down.
Connect RGMII_TXD<1> to 10K pull-down.
Connect RGMII_TXD<3> to 10K pull-down.
Connect RGMII_TXD<5> to 10K pull-down.
Connect RGMII_TXD<6> to 10K pull-down.
Connect RGMII_TXD<7> to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_COMP_VDD/_GND must remain connected as shown.
+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.
Connect RGMII_INTR to 10K pull-down (if not used as GPIO).
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD<0:3> together to 10K pull-down.
Connect RGMII_INTR/GPIO_35 to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_RXD2 to 10K pull-down.
Connect RGMII_RXD1 to 10K pull-down.
Connect RGMII_RXD0 to 10K pull-down.
Connect RGMII_RXD3 to 10K pull-down.
Connect RGMII_RXD<1> to 10K pull-down.
Connect RGMII_RXD<3> to 10K pull-down.
Connect RGMII_RXD<2> to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD3 to 10K pull-down.
Connect RGMII_TXD2 to 10K pull-down.
Connect RGMII_TXD0 to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD<2> to 10K pull-down.
Connect RGMII_TXD<0> to 10K pull-down.
Connect RGMII_TXD<1> to 10K pull-down.
Connect RGMII_TXD<3> to 10K pull-down.
Connect RGMII_TXD<5> to 10K pull-down.
Connect RGMII_TXD<6> to 10K pull-down.
Connect RGMII_TXD<7> to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Connect RGMII_COMP_VDD/_GND must remain connected as shown.
+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.
Connect RGMII_INTR to 10K pull-down (if not used as GPIO).
Connect RGMII_RXCLK to 10K pull-down.
Connect RGMII_RXD<0:3> together to 10K pull-down.
Connect RGMII_INTR/GPIO_35 to 10K pull-down.
Connect RGMII_RXCTL to 10K pull-down.
Connect RGMII_RXD2 to 10K pull-down.
Connect RGMII_RXD1 to 10K pull-down.
Connect RGMII_RXD0 to 10K pull-down.
Connect RGMII_RXD3 to 10K pull-down.
Connect RGMII_RXD<1> to 10K pull-down.
Connect RGMII_RXD<3> to 10K pull-down.
Connect RGMII_RXD<2> to 10K pull-down.
Connect RGMII_MDC to 10K pull-down.
Connect RGMII_TXD3 to 10K pull-down.
Connect RGMII_TXD2 to 10K pull-down.
Connect RGMII_TXD0 to 10K pull-down.
Connect RGMII_VREF to 10K pull-down.
Current numbers from MCP89_A01 Bring-Up Support document (MCP89_TDP_EDP_Bringup_Targets_Apple.pdf, dated August 5, 2009). K6/K69 EDP currents used.

NOTE: "SW" rails are dynamically switched in the SO state as needed, controlled by MCP89 GPIOs.

NOTE: VDD_COREx_SENSE signals should NOT be used for remote sensing unless VDD_COREA/VDD_COREB are powered by separate regulators. Instead connect regulator sense point as close to COREB FET as possible.
Q2300 helps reduce input rail droop during Q2300 turn-on.

MCP89 Memory Rail Gating

- NO STUBS on CKE signals!

DIMM CKE Clamps

- CKE must be held low to keep memory in self-refresh.

Clamps enable after MCP89 MEMVDD rail switched off. Clamps release after MEMVDD rail is up and CKEs are driven by MCP89.

- NO STUBS on CKE signals!

- Approx. Ramp Time (EN to 1.35V, μS): 7.91 + 0.0678 * R1(Kohms)

- Gated Rail Savings: 120mW

NV Requirements:

- Min Ramp-Up Time: 20 μS (10% to 90%)
- Max Ramp-Up Time: 65 μS (ENABLE to 90%)
- FET Ron <= 3.8 mOhms

- Loading (G driven to VCC)

C2300 helps reduce input rail droop during Q2300 turn-on.

- NOTE: nVidia recommends Infineon BSC030N03MS for Q2300.

- Max Ramp-Up Time: 65 μS (ENABLE to 90%)

- Loading (G driven to VCC)

C2300 helps reduce input rail droop during Q2300 turn-on.
Approx. Ramp Time (EN to 1V, uS): 43.9 + 0.6943 * C1(pF)

- Max Ramp-Up Time: 1500 uS (ENABLE to 90%)
- Min Ramp-Up Time: 100 uS (10% to 90%)
- FET Ron <= 2.5 mOhms
- Gated Rail Savings: 860mW

C2400 helps reduce input rail drop during GFX fast-ramp:

Max Ramp-Up Time: 1500 uS (ENABLE to 90%)

NOTE: nVidia recommends Infineon BSC020N03MS for Q2400.

C2405 helps reduce input rail drop during GFX fast-ramp:

Max Ramp-Up Time: 1500 uS (ENABLE to 90%)

NOTE: nVidia recommends Infineon BSC020N03MS for Q2400.
A14/A15 FOR 2G/4G MONO ONLY
CS1 IS FOR 2G DRP BANK CONTROL
JEDEC recommends 30 Ohm term to VTT for CS, CKE, ODT and 36 Ohm for BA, A, RAS, CAS, WE.
DCIN (AMON) Current Sense, RMUX & Filter

- **ISL6259 Gain:** 20x
 - SENSE R: R7525, 1mOhm
 - MAX Vdiff = 24.8mV
 - From charger, SW6-1
 - Value: 20 mOhm
 - MAX VOUT: 1.24V
 - GAIN: 200x
 - Scale: 2.778A / V
 - Gain: 20x
 - SCALE: 1A / V
 - Gain: 36x

- **Battery (BMON) Current Sense, MUX & Filter**
 - GAIN: 36x
 - Scale: 2.778A / V
 - Gain: 50x
 - SCALE: 1A / V
 - Place close to SMC

- **Chipset Regulators High-Side Current Sense / Filter**
 - Place close to SMC

- **MCP MEM VDD Current Sense / Filter**
 - Place close to SMC

VERIFY ALL RESISTOR AND GAINS

CPU VCore Load Side Current Sense / Filter

NOTE: Do not stuff R5415 and R7593 at the same time!
FAN CONNECTOR

- PP5V_G0_FAN
- PP312_G0_FAN
- 5V GND
- FAN_RTL_TACH

R5660

100K

201

47K

1/20W 5%

2

R5661

5V DC TACH MOTOR CONTROL GND

2

1

R5665

J5600

FF14A-4C-R11DL-B-3H F-RT-SM

Q5660

SOD-VESM-HF SSM3K15FV

5180793

CRITICAL
IMVP6 CPU VCORE REGULATOR

OCP = 21.5MV / R7480 + 3.1A
VPMON = 90 X R7480 X VO X I0
18A @ 3V = 1.62V
LOAD LINE = R7480 X 6 / (500U X R7414)
NOTE: Pulled up to 5V on DP connector page.

FET spec'd for 1.5V Vgs operation.

Q9302
SIGNAL_MODEL=DP_AUXCH_FET
SSM6N37FEAPE
SOT563
CKPLUS_WAIVE=PdifPr_badTerm

Q9300
SIGNAL_MODEL=DP_AUXCH_FET
SSM6N37FEAPE
SOT563

C9301
3300PF
10%
10V
X7R

R9302
MF
1/20W
5%
201
22

External DisplayPort Support
SYNC_MASTER=K16_MLB SYNC_DATE=07/07/2010

DP_EXT_AUX_CH_N
DP_CA_DET
DP_AUX_CH_C_P
DP_EXT_DDC_DATA
DP_CA_DET_RC
DP_AUX_CH_C_N
DP_EXT_DDC_CLK
DP_EXT_AUX_CH_P
Port Power Switch

Source resistance of > 5 MOhm. leakage of < 500 nA and gate to source resistance of ≥ 5 MΩ.

DP Source must pull-up to DP_PWR.
CPU/FSB Constraints

FSB (Front-Side Bus) Constraints

CPU Net Properties

MCP FSB COMP Signal Constraints

FSB Clock Constraints

CPU Clock Constraints

Intel Design Guide recommends FSB signals be routed only on internal layers.

CPU Clock Constraints

CPU Signals

Intel Design Guide recommends FSB signals be routed only on internal layers.

Source: MCP89 Interface DS (000-04625-001_v0.9), Section 2.1.4

Intel Design Guide recommends FSB signals be routed only on internal layers.

Source: Santa Rosa Platform DS, Rev 1.5 (#22294), Sections 4.2 & 4.3

Intel Design Guide recommends FSB signals be routed only on internal layers.

Source: Apple Inc.
Memory Constraints

MCP_MEM_COMP Signal Constraints

- CMD/CTRL signals should be matched within 150 ps.
- CLK intra-pair matching should be within 1 ps, inter-pair matching should be within 2 ps.
- No DQS to clock matching requirement.

MCP_MEM_COMP Signal Constraints

- Memory Bus Spacing Group Assignments

 - MEM_70D = STANDARD
 - MEM_55S = STANDARD
 - MEM_2OTHER = 25 MIL
 - MEM_DATA = 70_OHM_DIFF
 - MEM_CMD = 70_OHM_DIFF
 - MEM_CTRL = 4:1_SPACING
 - MEM_CLK = 4:1_SPACING
 - MEM_A_DM = 2x_DIELECTRIC
 - MEM_DQ = 3:1_SPACING

Memory Net Properties

- Memory Bus Spacing Group Assignments

 - Table of Spacing Assignments

<table>
<thead>
<tr>
<th>Table Item</th>
<th>Table Item</th>
<th>Table Item</th>
<th>Table Item</th>
<th>Table Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_DATA</td>
<td>MEM_CMD</td>
<td>MEM_CTRL</td>
<td>MEM_CLK</td>
<td>MEM_A_DM</td>
</tr>
</tbody>
</table>

MCP_MEM_COMP GND

- Memory Constraints

 - Apple Inc.
 - Sheet 051-8379 4.4.0

NOTICE OF PROPRIETARY PROPERTY:

This document contains information owned by Apple Inc. and/or its suppliers and is protected by copyright laws. You cannot reproduce, modify, lease, exploit, or distribute this material in any manner without the express written consent of Apple Inc.
NEED PCIe Gen1/Gen2 notes!

Analog Video Signal Constraints

Digital Video Signal Constraints

SATA Interface Constraints

PCI-Express

SOURCE: MCP9 Interface DD (MCP9_IFPAB_v0.9), Section 2.3

MCP89 Net Properties

SOURCE: MCP9 Interface DD (MCP9_IFPAB_v0.9), Section 2.4.2

Max trace length: 12 inches for SATA Gen1/Gen2, TBD for SATA Gen3.

MCP9 Interface DD (MCP9_IFPAB_v0.9), Section 2.6

Max trace length: LVDS 10 inches, DP 8.5 inches.

DisplayPort AUX CH intra-pair matching should be 5 ps. No relationship to other signals.

Digital Video Signal Constraints

Analog Video Signal Constraints

MCP89 Net Properties

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.6

Max trace length: 12 inches for SATA Gen1/Gen2, TBD for SATA Gen3.
SPI Interface Constraints

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.11

<table>
<thead>
<tr>
<th>NET</th>
<th>LAYER</th>
<th>MINIMUM NECK WIDTH</th>
<th>MAXIMUM NECK LENGTH</th>
<th>DIFFPAIR</th>
<th>PRIMARY GAP</th>
<th>DIFFPAIR NECK GAP</th>
<th>PHYSICAL RULE SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIO Signal Constraints

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.10

<table>
<thead>
<tr>
<th>NET</th>
<th>LAYER</th>
<th>MINIMUM NECK WIDTH</th>
<th>MAXIMUM NECK LENGTH</th>
<th>DIFFPAIR</th>
<th>PRIMARY GAP</th>
<th>DIFFPAIR NECK GAP</th>
<th>PHYSICAL RULE SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USB 2.0 Interface Constraints

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.7

<table>
<thead>
<tr>
<th>NET</th>
<th>LAYER</th>
<th>MINIMUM NECK WIDTH</th>
<th>MAXIMUM NECK LENGTH</th>
<th>DIFFPAIR</th>
<th>PRIMARY GAP</th>
<th>DIFFPAIR NECK GAP</th>
<th>PHYSICAL RULE SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HD Audio Interface Constraints

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.9

<table>
<thead>
<tr>
<th>NET</th>
<th>LAYER</th>
<th>MINIMUM NECK WIDTH</th>
<th>MAXIMUM NECK LENGTH</th>
<th>DIFFPAIR</th>
<th>PRIMARY GAP</th>
<th>DIFFPAIR NECK GAP</th>
<th>PHYSICAL RULE SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMBus Interface Constraints

SOURCE: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.8

<table>
<thead>
<tr>
<th>NET</th>
<th>LAYER</th>
<th>MINIMUM NECK WIDTH</th>
<th>MAXIMUM NECK LENGTH</th>
<th>DIFFPAIR</th>
<th>PRIMARY GAP</th>
<th>DIFFPAIR NECK GAP</th>
<th>PHYSICAL RULE SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCP89 Net Properties

<table>
<thead>
<tr>
<th>NET</th>
<th>LAYER</th>
<th>MINIMUM NECK WIDTH</th>
<th>MAXIMUM NECK LENGTH</th>
<th>DIFFPAIR</th>
<th>PRIMARY GAP</th>
<th>DIFFPAIR NECK GAP</th>
<th>PHYSICAL RULE SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table:
- **LINE-TO-LINE SPACING:**
 - **LAYER:**
 - **SPACING RULE SET:**
 - **WEIGHT:**
- **MINIMUM LINE WIDTH:**
- **ALLOW ROUTE:**
- **TABLE PHYSICAL RULE ITEM:**
- **TABLE PHYSICAL RULE HEAD:**
- **TABLE PHYSICAL RULE ITEMS:**

Notices:
- **III:** Not to reveal or publish it in whole or part
- **II:** Not to reproduce or copy it
- **I:** The owner agrees to the following:
 - The information contained herein is the notice of proprietary property.
SD Card Interface Constraints

<table>
<thead>
<tr>
<th>Source</th>
<th>Constraint Set</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff-Pair Primary Gap</th>
<th>Diff-Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_55S</td>
<td>SD INTERFACE</td>
<td>12 MIL</td>
<td>7.5 MIL</td>
<td>7.5 MIL</td>
<td>100 OHM DIFF</td>
<td>100 OHM DIFF</td>
</tr>
</tbody>
</table>

RGMII Net Properties

<table>
<thead>
<tr>
<th>Constraint Set</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff-Pair Primary Gap</th>
<th>Diff-Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGMII</td>
<td>100 OHM</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
</tr>
</tbody>
</table>

Ethernet Net Properties

<table>
<thead>
<tr>
<th>Constraint Set</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff-Pair Primary Gap</th>
<th>Diff-Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENET_MII</td>
<td>55 OHM</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
</tr>
</tbody>
</table>

SD Card Net Properties

<table>
<thead>
<tr>
<th>Constraint Set</th>
<th>Min Width</th>
<th>Min Neck Width</th>
<th>Min Neck Length</th>
<th>Diff-Pair Primary Gap</th>
<th>Diff-Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_INTERFACE</td>
<td>55 OHM</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
<td>55 OHM SE</td>
</tr>
<tr>
<td>NET_TYPE</td>
<td>NET_TYPE</td>
<td>PHYSICAL_SPACING</td>
<td>PHYSICAL_SPACING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_A_S3_SCL</td>
<td>SMBUS_SMC_MGMT_SCL</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_BSA_SDA</td>
<td>SMBUS_SMC_BSA_SCL</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_0_S0_SCL</td>
<td>SMBUS_SMC_0_S0_SDA</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_A_S3_SDA</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_B_S0_SCL</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_B_S0_SDA</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_SMC_A_S3_SCL</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_CSI_P</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_CSI_N</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_CSO_R_P</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_CSO_R_N</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_CSO_P</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMBUS_CSI_R_N</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMC Constraints

Apple Inc.

NOTICE OF PROPRIETARY PROPERTY:

NOTICE OF PROPRIETARY PROPERTY:

NOTICE OF PROPRIETARY PROPERTY:

NOTICE OF PROPRIETARY PROPERTY:

106 OF 110

10 OF 13

www.vinafix.vn
SD CARD READER LAYOUT RELAXATIONS

<table>
<thead>
<tr>
<th>Net</th>
<th>Min Width</th>
<th>Max Length</th>
<th>Diff Pair</th>
<th>Primary Gap</th>
<th>Diff Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCP Fanout Constraint relaxations

<table>
<thead>
<tr>
<th>Net</th>
<th>Min Width</th>
<th>Max Width</th>
<th>Diff Pair</th>
<th>Primary Gap</th>
<th>Diff Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Misc Net Properties

- **Net**
- **Position**
- **Properties**
 - **Electrical Constraint Set**
 - **Physical**
 - **Spacing**
 - **Net Type**

Power Net Properties

- **Net**
- **Position**
- **Properties**
 - **Electrical Constraint Set**
 - **Physical**
 - **Spacing**
 - **Net Type**

Graphics Net Properties

- **Net**
- **Position**
- **Properties**
 - **Electrical Constraint Set**
 - **Physical**
 - **Spacing**
 - **Net Type**

Audio Net Properties

- **Net**
- **Position**
- **Properties**
 - **Electrical Constraint Set**
 - **Physical**
 - **Spacing**
 - **Net Type**

Table of Spacing Assignments

<table>
<thead>
<tr>
<th>Net</th>
<th>Layer</th>
<th>Min Width</th>
<th>Max Width</th>
<th>Diff Pair</th>
<th>Primary Gap</th>
<th>Diff Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTICE OF PROPRIETARY PROPERTY:

This drawing contains proprietary property of Apple Computer, Inc. and/or its suppliers. No portion of this drawing, including photographs or other reproductions, may be copied, reproduced, or transmitted in any form, by any means, in whole or in part, without the written consent of Apple Computer, Inc. Apple Computer, Inc. reserves all rights to this drawing.
K99 BOARD-SPECIFIC SPACING & PHYSICAL CONSTRAINTS

<table>
<thead>
<tr>
<th>TABLE BOARD_INFO</th>
<th>TABLE_Physical_rule_HEAD</th>
<th>TABLE_Physical_rule_ITEM</th>
</tr>
</thead>
</table>

BOARDertime:

- **8 7 5 4 2 1**

K99 RULE DEFINITIONS

- **Apple Inc.**

- **058-8379 - 1**

- **109 of 110**

-. 12 of 33

www.vinafix.vn
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>REFERENCE DES</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0632</td>
<td>10</td>
<td>CAP, 2.2UF, 6.3V, 20%, 0402</td>
<td>CRITICAL</td>
<td>SS_CAP_2_2UF</td>
<td></td>
</tr>
<tr>
<td>138S0625</td>
<td>8</td>
<td>CAP, 2.2UF, 6.3V, 20%, 0402</td>
<td>CRITICAL</td>
<td>SS_CAP_2_2UF</td>
<td></td>
</tr>
<tr>
<td>138S0629</td>
<td>10</td>
<td>CAP, 22UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>C3620,C3621,C3624,C3625,C3630,C3631,C3634,C3635,C3640,C3641</td>
<td></td>
</tr>
<tr>
<td>138S0633</td>
<td>10</td>
<td>CAP, 2.2UF, 6.3V, 20%, 0402</td>
<td>CRITICAL</td>
<td>C9930,C9931,C9932,C9933,C9934,C9935,C9936,C9937,C9938,C9939</td>
<td></td>
</tr>
<tr>
<td>138S0634</td>
<td>10</td>
<td>CAP, 2.2UF, 6.3V, 20%, 0402</td>
<td>CRITICAL</td>
<td>C1283,C1284,C1285,C1286,C1287,C1288,C1291,C1292,C1293,C1294,C1295,C1296</td>
<td></td>
</tr>
</tbody>
</table>

MURATA

TAIYO YUDEN

10UF 0603 CAPACITOR VENDOR TABLES FOR ACOUSTICS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>REFERENCE DES</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0642</td>
<td>9</td>
<td>CAP, 10UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>SS_CAP_10UF</td>
<td></td>
</tr>
<tr>
<td>138S0644</td>
<td>8</td>
<td>CAP, 10UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>SS_CAP_10UF</td>
<td></td>
</tr>
<tr>
<td>138S0645</td>
<td>8</td>
<td>CAP, 10UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>SS_CAP_10UF</td>
<td></td>
</tr>
</tbody>
</table>

22UF 0603 CAPACITOR VENDOR TABLES FOR ACOUSTICS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>REFERENCE DES</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0643</td>
<td>5</td>
<td>CAP, 22UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>SS_CAP_22UF</td>
<td></td>
</tr>
<tr>
<td>138S0645</td>
<td>5</td>
<td>CAP, 22UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>SS_CAP_22UF</td>
<td></td>
</tr>
<tr>
<td>138S0647</td>
<td>4</td>
<td>CAP, 22UF, 6.3V, 20%, 0603</td>
<td>CRITICAL</td>
<td>SS_CAP_22UF</td>
<td></td>
</tr>
</tbody>
</table>

SS_CAP_2_2UF

SS_CAP_10UF

SS_CAP_22UF

DESCRIPTION REFERENCE DES BOM OPTION QTYPART NUMBER CRITICAL

DESCRIPTION REFERENCE DES BOM OPTION QTYPART NUMBER CRITICAL

MURATA

TAIYO YUDEN

Acoustic Cap BOM Config Tables

Apple Inc.