### BOMs

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>826-4393</td>
<td>8</td>
<td>LBL, P/N LABEL, PCB, 28MM X 6MM</td>
<td>CRITICAL</td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>8</td>
<td>LBL, P/N LABEL, PCB, 28MM X 6MM</td>
<td>CRITICAL</td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>8</td>
<td>LBL, P/N LABEL, PCB, 28MM X 6MM</td>
<td>CRITICAL</td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>8</td>
<td>LBL, P/N LABEL, PCB, 28MM X 6MM</td>
<td>CRITICAL</td>
<td></td>
</tr>
<tr>
<td>826-4393</td>
<td>8</td>
<td>LBL, P/N LABEL, PCB, 28MM X 6MM</td>
<td>CRITICAL</td>
<td></td>
</tr>
</tbody>
</table>

### Module Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1170052</td>
<td>1</td>
<td>IC, SANTAYNEZ, MEROM, 1.6GHz, ES, 20W, 956BGA</td>
<td>CRITICAL</td>
<td>CPU_1_HYDRO</td>
</tr>
<tr>
<td>1170052</td>
<td>1</td>
<td>LOW POWER CLOCK SYNTHESIZER, SLG2AP101, 68PIN</td>
<td>CRITICAL</td>
<td></td>
</tr>
<tr>
<td>1170052</td>
<td>1</td>
<td>IC, PRGM, SST SST89V54RD, UCNTRLR, M82</td>
<td>CRITICAL</td>
<td></td>
</tr>
<tr>
<td>1170052</td>
<td>1</td>
<td>IC, ISL6258, REV2, BAT CHGR, 28P QFN</td>
<td>CRITICAL</td>
<td></td>
</tr>
</tbody>
</table>

### Alternate Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12260073</td>
<td>12260073</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>7034903</td>
<td>7034903</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>10360015</td>
<td>10360015</td>
<td>ALL</td>
<td></td>
</tr>
</tbody>
</table>

### Configuration Options

<table>
<thead>
<tr>
<th>CONFIGURATION OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWC: Master = No/1/1</td>
</tr>
<tr>
<td>FWC: ZADDO/1/1</td>
</tr>
</tbody>
</table>

**NOTICE OF PROPRIETARY RIGHTS**

The information contained herein is the property of Apple Inc. and is subject to change without notice. This document contains proprietary and confidential information. It may not be used, copied, or transmitted in any form or by any means without prior written permission from Apple Inc.
### 1UF 0402 Capacitor Vendor Tables for Acoustics

#### SAMSUNG

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008009</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008010</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### MURATA

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006805</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006805</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### TAIYO YUDEN

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0626</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0626</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 2.2UF 0402 Capacitor Vendor Tables for Acoustics

#### SAMSUNG

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008009</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008010</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### MURATA

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006805</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006805</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### TAIYO YUDEN

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0626</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0626</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 10UF 0603 Capacitor Vendor Tables for Acoustics

#### SAMSUNG

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008009</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008010</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### MURATA

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006805</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006805</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### TAIYO YUDEN

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
<th>REFERENCE DES</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0626</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138S0626</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ICT Test Points

These nets have a ICT_TEST property. This indicates a MUSTHAVE requirement for ICT.
Mini-XDP Connector

NOTES: This is not the standard XDP pinout.
Use with 920-0451 adapter board to support CPU, NB & SB debugging.

Direction of XDP module to edge of board

Please avoid any obstructions

XDP_PWRGD
NB_CFG[4]
NB_CFG[7]
NB_CFG[6]
NB_CFG[1]
NB_CFG[0]
R1399
XDP
1/20W
1K
201
MF
23
26
53 52 51 46
21
25

1
R1315
1/20W
54.9
201
XDP
MF
1%
2
1

www.vinafix.vn

Use with 920-0451 adapter board to support CPU, NB & SB debugging.

NOTE: This is not the standard XDP pinout.
Tie VCC_AXG and VCC_AXG_NCTF to GND.
Tie DPLL_REF_CLK* and DPLL_REF_SSCLK* to VCC (VCore).
Tie DPLL_REF_CLK and DPLL_REF_SSCLK to GND.
TV_DCONSELx to GND.
Can also tie CRT_DDC_*, L_CTRL_*, L_DDC_*, SDVO_CTRL_* and Internal Graphics Disable
and filtered at all times!
VCCD_CRT, VCCD_QDAC and VCC_SYNC.
VSYNC and CRT_TVO_IREF to GND.
Tie TVx_DAC, TVx_RTN, R/R#/G/G#/B/B#, HSYNC, CRT & TV-Out Disable
rails must be filtered except for VCCA_CRT.
All CRT/TVDAC rails must be powered.  All
Tie R/R#/G/G#/B/B#, HSYNC and VSYNC to GND.
CRT Disable / TV-Out Enable
TVDAC rails.  VCCA_TVx_DAC and VCCA_DAC_BG can
Tie TVx_DAC and TVx_RTN to GND.  Must power all
Can leave all signals NC if LVDS is not implemented.
LVDS Disable

---

www.vinafix.vn
Current numbers from Crestline EDS, doc #21749.

76 28 28 250 mA
27 27

60 mA
40 mA
40 mA
40 mA
10 mA
5 mA
64 72

57 26

51 24

52 23

60 27

53 22

61 21

51 21

8 19

7 18

6 17

46 44 44

30 29

19 16

8 7

6 5

0.4 mA

64 26

53 26

63 26

PP1V8_S0 NB VCCTXLVDS
PP1V25_S0M NB VCCA_HPLL
PP1V25_S0 NB_VCCA_DPLLB
PP1V25_S0 NB_PEGPLL
PP1V8_S0_NB_VCCTXLVDS
www.vinafix.vn
NOTE: This filter is required even if using only external graphics.

Filtering changed per EN 50601-2-2

CRITICAL

Layout Notes:

- B.0.0
- A
- D
- C
- 051-7230

NB Graphics Decoupling

NOTE OF PROPRIETARY PROPERTY

II NOT TO REPRODUCE OR COPY IT

TO MAINTAIN THE DOCUMENT IN CONFIDENCE

PROPERTY OF APPLE COMPUTER, INC. THE POSSESSOR

THE INFORMATION CONTAINED HEREIN IS THE PROPRIETARY

www.vinafix.vn
Platform Reset Connections

Unbuffered

Buffered

SB RTC Crystal Circuit

This part is never stuffed, it provides a set of pads on the board to short or to solder a reset button.

Place R2808 pads on bottom side near board edge

Silk: "SYS RST"

SB Misc
CPU speed is currently set to 200MHz.
MEM CLOCK TERMINATION
Place one resistor at each end of Y split

---
R3390  R3391
0.05  2.2

---
R3392  R3393
200  200

---
R3394  R3395
200  200

---
R3396  R3397
200  200

---

One cap for each side of every RPAK, one cap for every two discrete resistors
BOM OPTION shown at the top of each group applies to every part below it

---

LAYOUT NOTE: PLACE ONE CAP CLOSE TO EVERY TWO PULLUP RESISTORS TERMINATED TO PREV_XU_MEM_TERM
Micro DVI, USB, to RIO Hatch Assembly

Audio Connector

Hatch and Audio Connectors

Notice of Proprietary Property

The information contained herein is the proprietary property of Apple Inc. The possessor agrees to the following:

I. Not to reproduce or copy it
II. Not to reveal or publish in whole or part
III. To maintain the document in confidence

APPLE INC.

www.vinafix.vn
USB 2.0 CONNECTOR

Connect to 5V S5 or S3 per layout

Current limit to 1.5A continuous

USB/SMC MUX

USB external connectors

Notice of proprietary property
IPD Connector

Inverted to drive SMC_RESET logic

Power Button Inverter

Inverted to drive SMC_RESET logic
those designated as inputs require pull-ups. Pins designed as outputs can be left floating; those designated as inputs require pull-ups.
Debug Power Button

SMC 1.05V to 3.3V Level Shifting

- Reset Power Button
- Place R5001 on bottom side near board edge
- Silk: "SMC_RST"

2

1/16W

Place on bottom side

57

40

Silk: "PWR BTN"

LSOC_PRESS_H
SMC_ONOFF_H
SMC_ONOFF_L
SMC_MANUAL_RST_L

SSM6N15FE
Q5030
OUT

1/16W

5%

1/20W

3.3V TO PBUS LEVEL SHIFTING

- R5010 will pull down SMC MANUAL_RST_L in the event of a keyboard SMC reset generated when left shift, option, and control and the power button is depressed.

- Q5030 will pull down SMC MANUAL_RST_L in the event of a keyboard SMC reset generated when left shift, option, and control and the power button is depressed.

SMC 3.3V to 1.05V Level Shifting

- CPU_PROCHOT_L
- PM_THRMTRIP_L

Battery Pack Status

SMC AVREF Supply

3.3V TO PBUS LEVEL SHIFTING

- CPU_PROCHOT
- PM_THRMTRIP

SMC 1.05V to 3.3V Level Shifting

- Reset Power Button
- Place R5001 on bottom side near board edge
- Silk: "SMC_RST"

2

1/16W

Place on bottom side

57

40

Silk: "PWR BTN"

LSOC_PRESS_H
SMC_ONOFF_H
SMC_ONOFF_L
SMC_MANUAL_RST_L

SSM6N15FE
Q5030
OUT

1/16W

5%

1/20W

3.3V TO PBUS LEVEL SHIFTING

- R5010 will pull down SMC MANUAL_RST_L in the event of a keyboard SMC reset generated when left shift, option, and control and the power button is depressed.

- Q5030 will pull down SMC MANUAL_RST_L in the event of a keyboard SMC reset generated when left shift, option, and control and the power button is depressed.

SMC 3.3V to 1.05V Level Shifting

- CPU_PROCHOT_L
- PM_THRMTRIP_L

Battery Pack Status

SMC AVREF Supply

3.3V TO PBUS LEVEL SHIFTING

- CPU_PROCHOT
- PM_THRMTRIP
LPC+SPI Connector

Place R5101 close to J5100

Place halfway between SPIROM and J5100

Place R5102 close to J5100

Place within 0.5" of SB

Pullup to internal ROM on S5

LPC+SPI Connector

SPI_CS MUX

Place halfway between SPIROM and J5100

Place within 0.5" of SB

Place R5102 close to J5100

Place within 0.5" of SB

Pullup to internal ROM on S5
**ACIN VOLTAGE SENSE**

Max 14.5V + 10% ACIN = 3.0V SMC_PBUS_VSENSE

R5300 and R5301 values chosen for RC filter @ 4.53KOhm Thevenin resistance

**GPU VOLTAGE SENSE**

**PBUS VOLTAGE SENSE**

Nominal 8.4V PBUS = 3.0V SMC_PBUS_VSENSE

R5350 and R5351 values chosen for RC filter @ 4.53KOhm Thevenin resistance

---

**Voltage Sensors**

APPLE INC.

051-7230  A-A-D

Notice of Proprietary Property

The information contained herein is the proprietary property of Apple Computer, Inc. The possessor agrees to the following:

I. To maintain the document in confidence

II. Not to reproduce or copy it

III. Not to reveal or publish in whole or part
REMOTE TEMP AT HEAT SPREADER

APN: 518S0354

CPU THERMAL DIODE

LOCAL TEMP NEAR POWER SUPPLIES

(TO CPU INTERNAL THERMAL DIODE)

1. ROUTE DXP AND DXN DIFFERENTIALLY
2. ROUTE GROUNDED GUARD TRACES AROUND THE DXP/DXN DIFF PAIR
3. PLACE C5522 NEAR U5520 VDD

WRITE: 0x9E READ: 0x9F

WRITE: 0x90 READ: 0x91

TEMPERATURE SENSORS
FAN CONNECTOR

---

**Notice of Proprietary Property**

The information contained herein is the proprietary property of Apple Computer, Inc. The possessor agrees to the following:

I. Not to reproduce or copy it.
II. Not to reveal or publish in whole or part.
III. To maintain the document in confidence.

---

**Diagram Details**

- **Motor Control GND**
- **5V DC**
- **TACH**
- **NC NC**
- **Fan Connector**
- **R5665 47K**
- **R5660 47K**
- **R5661 100K**
- **Q5660 SSM3K15FV**
- **51800354**
- **PP3V3_B_S0**
- **SMC_FAN_0_TACH**
- **SMC_FAN_0_CTL**
- **PP5V_S0**
- **FAN_RT_TACH**
- **FAN_RT_PWM**

---

**Technical Specifications**

- **SYNC_MASTER=M70**
- **SYNC_DATE=01/09/2007**

---

**Website:** www.vinafix.vn
SUDDEN MOTION SENSOR

APN: 338S0354

I2C addresses:
Address low => 0x30, 0x31
Address high => 0x32, 0x33
Alias SCL/SDA to GND if using analog outputs only

Desired orientation when placed on board top-side:

Desired orientation when placed on board bottom-side:

www.vinafix.vn
SPI ROM

---

**NOTICE OF PROPRIETARY PROPERTY**

I agree to the following:

I. To maintain the document in confidence
II. Not to reproduce or copy it
III. Not to reveal or publish in whole or part

---

PLACEMENT_NOTE=Place R6114 within 12.7mm of U6100

PLACEMENT_NOTE=Place R6190 within 12.7mm of U2300

PLACEMENT_NOTE=Place R6191 within 12.7mm of U2300

PLACEMENT_NOTE=Place R6193 within 12.7mm of U2300

---

**SPI ROM**

- SPI_INT_CE_L<0>
- SPI_A_INT_HOLD_L
- SPI_A_INT_CLK
- SPI_A_SI_R
- SPI_A_SCLK_R
- SPI_CE_R_L<0>
- SPI_SI_R
- SPI_A_INT_WP_L
- SPI_SO
- SPI_CE_L<0>
- SPI_A_INT_SI
- SPI_SCLK_R
- SPI_A_SO_R

**SPI ROMs**

SYNC_MASTER=WFERRY

SYNC_DATE=04/26/2006

---

www.vinafix.vn
1.5V/1.05V POWER SUPPLY

State | PM_SLP_S3_L | PP1V5_S0 | PP1V05_S0  
S0    | HIGH        | 1.5V      | 1.05V      
S3/S5/G3Hot | LOW | 0.0V      | 0.00V      

Vout = 0.758V * (1 + Ra / Rb)
Vout = 0.758V * (1 + Rc / Rb)

Routing Note:
The discharge path (VO1) should have a sensing trace, separate from the output voltage.

Placement Note:
R7361, C7305 close to U7300 pin 15.

Note: pu on PGOOD page
1.8V/0.9V POWER SUPPLY

State | PM_S4_STATE_L | PM_SLP_S3 | PP1V8_S3 | PP0V9_S0
-----|---------------|-----------|----------|----------
S0   | HIGH         | HIGH      | 1.8V     | 0.9V     
S3   | HIGH         | LOW       | 1.8V     | 0.9V     
5V/3V_LOW | LOW       | LOW       | 0.0V     | 0.0V     

\[ \text{Vout} = 0.75V \times (1 + \frac{\text{Ra}}{\text{Rb}}) \]

Placement Note:
- PLACE C7507, C7508 GND NEAR PIN 1
- PLACE XW7500, NEAR C7542 PIN 2
- PLACE C7543 NEAR NB

Routing Note:
- using Kelvin connection.
- Connect CS_GND to 6 vias under the thermal pad
- MIN_LINE_WIDTH=0.3 mm
- MIN_NECK_WIDTH=0.2 mm
- MIN_LINE_WIDTH=0.6 mm
- MIN_NECK_WIDTH=0.2 mm

CRITICAL Q7520 SI7110DN PWRPK-1212-8
CRITICAL Q7521 SI7108DNS PWRPK-1212-8

MAX CURRENT = 11A
PWM FREQ. = 400 kHz
5V/3.3V POWER SUPPLY

State | SN6_PM_G2_EN | PP3V3_G3H | PP5V_S5 | PP3V3_S5
G3H  | LOW          | 3.3V      | 0.0V    | 0.0V
S0/S3/S5 | HIGH        | 3.3V      | 5.0V    | 3.3V

Routing Note:
- A dedicated trace to the output cap
- The discharge path (VO1) should have a dedicated trace to the output cap
- Put 6 vias under the thermal pad

Vout = 1V \times (1 + Ra / Rb)
5.106V = 1V \times (1 + 20K / 4.87K)

PWM FREQ. = 280 kHz
MAX CURRENT = 6.0A
(inductor limited) PP5V_S5

PWM FREQ. = 430 kHz
MAX CURRENT = 7.8A
(OCP setting limited) PP3V3_S5

5V/3.3V Supplies

C7600:
- 10UF
- X5R
- 6.3V
- OMIT

C7604:
- 10UF
- X5R
- 6.3V
- OMIT

C7602:
- close to U7600 pin 22.

C7603:
- close to U7600 pin 21.

C7605:
- close to U7600 pin 20.

R7601,
- 5.90K
- 201
- MF
- 1%

R7603:
- 7.15K
- 201
- MF
- 1%

R7605:
- 241

WARNING:
- The discharge path (VO1) should have a dedicated trace to the output cap
- Put 6 vias under the thermal pad

Other components,
- C7640
- C7641
- C7667
- C7660
- R7668
- R7669
- R7670
- C7680
- C7681
- C7682
- SI7110DN
- X5R
- 6.3V
- 20%
- A1
- B1
- C1
- D1
- E1
- F1
- G1
- H1
- I1
- J1
- K1
- L1
- M1
- N1
- O1
- P1
- Q1
- R1
- S1
- T1
- U1
- V1
- W1
- X1
- Y1
- Z1

Dedicated trace
- A
- B
- C
- D

www.vinafix.vn
3.425V G3H SUPPLY

Supply needs to guarantee 3.31V delivered to SMC VRef generator

Q7730 will pull down
P3V42G3H_OUTPUT in the event of a keyboard SMC reset
generated when left shift, option, and control
and the power button is depressed.

Vout = 1.25V * (1 + Ra / Rb)

1.25V S0 REGULATOR

Vout = 0.8V * (1 + Ra / (Rb + Rc))

www.vinafix.vn
S3 FETS & S3/S5 CONTROL

5V/3.3V S5 RUN/SS CONTROL  1.8V S3 RUN/SS CONTROL

--- Diagram ---

--- Diagram ---
LVDS, Camera Conn. and ALS Conn.

APN: 518S0356

www.vinafix.vn
SST8051 microcontroller for HDCP support
A 1.3K OHM 1% RESISTOR IS REQUIRED BETWEEN CRT_IREF AND CRT_TVO_IREF.

Place components near J4200 unless otherwise noted.

CRITICAL
Some signals require 27.4-ohm single-ended impedance. Most CPU signals with impedance requirements are 55-ohm single-ended.

**NOTE:** Design Guide allows closer spacing if signal lengths can be shortened.

Design Guide recommends FSB signals be routed only on internal layers. Worst-case spacing is 2:1 within Data bus, with 3:1 spacing to the DSTBs. Worst-case spacing is 2:1 within Addr bus, with 3:1 spacing to the ADSTBs.

### CPU Signal Constraints

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Layer</th>
<th>Min_spacing</th>
<th>Min_spacing2</th>
<th>Min_spacing3</th>
<th>Min_spacing4</th>
<th>Min_spacing5</th>
<th>Min_spacing6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU_CLK</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VCCSENSE</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VCCSENSE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FSB_CPUSLP_L)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDP_BPM_L5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDP_TRST_L</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDP_TDI</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDP_TDO</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDP_TMS</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### CPU / FSB Net Properties

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Min_spacing</th>
<th>Min_spacing2</th>
<th>Min_spacing3</th>
<th>Min_spacing4</th>
<th>Min_spacing5</th>
<th>Min_spacing6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU_27P4S</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_2TO1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;1&gt;</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;2&gt;</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_FROM_SB</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_ITP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_ITP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VID&lt;6..0&gt;</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VID&lt;6..0&gt;</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VCCSENSE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** 7 mil gap is for VCCSense pair, which

### CPU/FSB Constraints

<table>
<thead>
<tr>
<th>Net_Name</th>
<th>Min_spacing</th>
<th>Min_spacing2</th>
<th>Min_spacing3</th>
<th>Min_spacing4</th>
<th>Min_spacing5</th>
<th>Min_spacing6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU_COMP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;1&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;2&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;3&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;4&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;5&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_COMP&lt;6&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_FROM_SB</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_ITP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_ITP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VID&lt;6..0&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VID&lt;6..0&gt;</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU_VCCSENSE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** 7 mil gap is for VCCSense pair, which
CRT_HSYNC/CRT_VSYNC signals are 55-ohm +/- 15% single-ended impedance.

- 55-ohm +/- 15% from second termination resistor to connector.
- 50-ohm +/- 15% from first to second termination resistor.
## DDR2 Memory Bus Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Source</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_DATA2MEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CMD2CMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_87D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_55S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CTRL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CLK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Memory Net Properties

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Source</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_DATA2MEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CMD2CMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_87D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_55S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CTRL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CLK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Memory Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Source</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_DATA2MEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CMD2CMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_87D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_55S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CTRL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEM_CLK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

* NOTICE OF PROPRIETARY PROPERTY
  * The information contained herein is the confidential property of Apple Inc. It may not be used or reproduced in whole or in part.
  * The information contained herein is intended for use by authorized personnel only.
  * Any unauthorized copying or reproduction of this document is strictly prohibited.

---

* NOT TO REPRODUCE OR COPY IT TO MAINTAIN THE DOCUMENT IN CONFIDENCE
### PCI Bus Constraints

<table>
<thead>
<tr>
<th>BUS</th>
<th>LAYER</th>
<th>MINIMUM LINE-TO-LINE SPACING</th>
<th>MAXIMUM LINE-TO-LINE SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIE_R2D</td>
<td>L1</td>
<td>20 MILS</td>
<td></td>
</tr>
</tbody>
</table>

**PHYSICAL_RULE_SET**

- ENET_MDI
- PCIE_D2R
- PCIE_R2D
- LAN_55S
- PCI_55S

**TABLE_SPACING_RULE_ITEM**

- **TABLE_SPACING_ASSIGNMENT_ITEM**
  - =100_OHM_DIFF

**DIFFPAIR NECK GAP**

- **TABLE_PHYSICAL_RULE_ITEM**
  - **TABLE_PHYSICAL_RULE_HEAD**

### Electrical Constraint Set

- **SB_CLINK_VREF1**
- **SB_CLINK_VREF0**
- **CLINK_NB_RESET_L**
- **ENET_MDI0**
- **ENET_100D**
- **ENET_LAN**
- **LAN_55S**
- **GLAN_COMP**
- **PCIE_B_D2R**
- **PCIE_B_R2D**
- **PCIE_A_R2D**
- **INT_PIRQD_L**
- **PCI_REQ2_L**
- **PCI_CNTL**
- **PCI_CNTL**
- **PCI_C_BE_L**
- **PCI_AD**
- **PCI_AD20**
- **PCI_AD19**

**PHYSICAL**

- **CLINK_VREF**
- **CLINK_VREF**
- **CLINK**
- **CLINK**

- **ENET_MDI**
- **ENET_MDI**
- **ENET_MDI**

- **ENET_LAN**
- **ENET_LAN**

- **GLAN_100D**
- **ENET_GLAN**

- **PCIE_100D**

- **PCI_55S**

**SB Constraints (2 of 2)**

<table>
<thead>
<tr>
<th>BUS</th>
<th>LAYER</th>
<th>MINIMUM LINE-TO-LINE SPACING</th>
<th>MAXIMUM LINE-TO-LINE SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIE_D2R</td>
<td>L1</td>
<td>20 MILS</td>
<td></td>
</tr>
</tbody>
</table>

**PHYSICAL_RULE_SET**

- ENET_MDI
- PCIE_D2R
- PCIE_R2D
- LAN_55S
- PCI_55S

**TABLE_SPACING_RULE_ITEM**

- **TABLE_SPACING_ASSIGNMENT_ITEM**
  - =100_OHM_DIFF

**DIFFPAIR NECK GAP**

- **TABLE_PHYSICAL_RULE_ITEM**
  - **TABLE_PHYSICAL_RULE_HEAD**

**III NOT TO REVEAL OR PUBLISH IN WHOLE OR PART**

**II NOT TO REPRODUCE OR COPY IT**

---

![Image of a page from a document]
### M82 Board-Specific Spacing & Physical Constraints

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>2.28:1</td>
<td>0.085 mm</td>
<td>0.100 mm</td>
<td>0.1 mm</td>
<td>0.280 mm</td>
<td>0.250 mm</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>2.28:1</td>
<td>0.085 mm</td>
<td>0.100 mm</td>
<td>0.1 mm</td>
<td>0.280 mm</td>
<td>0.250 mm</td>
</tr>
<tr>
<td>LAYER1</td>
<td>2.5:1</td>
<td>0.085 mm</td>
<td>0.100 mm</td>
<td>0.1 mm</td>
<td>0.280 mm</td>
<td>0.250 mm</td>
</tr>
<tr>
<td>LAYER2</td>
<td>2.5:1</td>
<td>0.085 mm</td>
<td>0.100 mm</td>
<td>0.1 mm</td>
<td>0.280 mm</td>
<td>0.250 mm</td>
</tr>
<tr>
<td>LAYER3</td>
<td>2:1</td>
<td>0.085 mm</td>
<td>0.100 mm</td>
<td>0.1 mm</td>
<td>0.280 mm</td>
<td>0.250 mm</td>
</tr>
</tbody>
</table>

### PHYSICAL_RULE_SET

<table>
<thead>
<tr>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
<th>PHYSICAL_RULE_SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1_DIFFPAIR</td>
<td>100_OHM_DIFF</td>
<td>90_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>85_OHM_DIFF</td>
<td>70_OHM_DIFF</td>
<td>27P4_OHM_SE</td>
</tr>
<tr>
<td>100_OHM_DIFF</td>
<td>90_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>85_OHM_DIFF</td>
<td>70_OHM_DIFF</td>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
</tr>
<tr>
<td>90_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>85_OHM_DIFF</td>
<td>70_OHM_DIFF</td>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
<td>55_OHM_SE</td>
</tr>
<tr>
<td>87_OHM_DIFF</td>
<td>87_OHM_DIFF</td>
<td>85_OHM_DIFF</td>
<td>70_OHM_DIFF</td>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
<td>55_OHM_SE</td>
<td>50_OHM_SE</td>
</tr>
<tr>
<td>85_OHM_DIFF</td>
<td>70_OHM_DIFF</td>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
<td>55_OHM_SE</td>
<td>50_OHM_SE</td>
<td>50_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>70_OHM_DIFF</td>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
<td>55_OHM_SE</td>
<td>50_OHM_SE</td>
<td>50_OHM_SE</td>
<td>50_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
<tr>
<td>27P4_OHM_SE</td>
<td>50_OHM_SE</td>
<td>55_OHM_SE</td>
<td>50_OHM_SE</td>
<td>50_OHM_SE</td>
<td>50_OHM_SE</td>
<td>50_OHM_SE</td>
<td>45_OHM_SE</td>
</tr>
</tbody>
</table>

### DIFFPAIR PRIMARY GAP

<table>
<thead>
<tr>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
<th>DIFFPAIR_PRIMARY_GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.280 mm</td>
<td>0.250 mm</td>
<td>0.180 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
<td>0.180 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
</tr>
</tbody>
</table>

### DIFFPAIR NECK GAP

<table>
<thead>
<tr>
<th>DIFFPAIR_NECK_GAP</th>
<th>DIFFPAIR_NECK_GAP</th>
<th>DIFFPAIR_NECK_GAP</th>
<th>DIFFPAIR_NECK_GAP</th>
<th>DIFFPAIR_NECK_GAP</th>
<th>DIFFPAIR_NECK_GAP</th>
<th>DIFFPAIR_NECK_GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.280 mm</td>
<td>0.280 mm</td>
<td>0.205 mm</td>
<td>0.180 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
</tr>
</tbody>
</table>

### LINE-TO-LINE SPACING

<table>
<thead>
<tr>
<th>LINE-TO-LINE_SPACING</th>
<th>LINE-TO-LINE_SPACING</th>
<th>LINE-TO-LINE_SPACING</th>
<th>LINE-TO-LINE_SPACING</th>
<th>LINE-TO-LINE_SPACING</th>
<th>LINE-TO-LINE_SPACING</th>
<th>LINE-TO-LINE_SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>0.2 mm</td>
<td>0.2 mm</td>
<td>0.3 mm</td>
<td>0.1 mm</td>
<td>0.1 mm</td>
<td>0.2 mm</td>
</tr>
</tbody>
</table>

### WEIGHT

<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>WEIGHT</th>
<th>WEIGHT</th>
<th>WEIGHT</th>
<th>WEIGHT</th>
<th>WEIGHT</th>
<th>WEIGHT</th>
<th>WEIGHT</th>
</tr>
</thead>
</table>