1. All resistance values are in ohms, 0.1 watt +/- 5%.
2. All capacitance values are in microfarads.
3. All crystals & oscillator values are in hertz.

PAGE CONTENTS

1. TITLE PAGE AND CONTENTS
2. SYSTEM BLOCK DIAGRAM
3. POWER BLOCK DIAGRAM
4. PCB NOTES AND HOLES
5. MPC7450 MAXBUS INTERFACE
6. MPC7450 DATA
7. CPU PLL AND CONFIGURATION STRAPS
8. INTREPID MAXBUS AND BOOT STRAPS
9. INTREPID MEMORY INTERFACE / BOOT ROM
10. DDR MEMORY MIXES
11. 200PIN DDR MEMORY SODIMM CONNECTORS
12. INTREPID AGP 4X/PCI
13. INTREPID EMET/FW/UATA/EIDE INTERFACES
14. INTREPID GPIOS/SERIAL/USB INTERFACES
15. INTREPID POWER RAILS
16. INTREPID DECODING
17. CARDBUS CONTROLLER (PCI1510)
18. M11 AGP & CLOCKS
19. M11 LVDS/TMDS/VGA/GPIO & GPU VCORE
20. SIL178 DUAL TMDS TRANSMITTER
21. M11 ANALOG, POWER, GND
22. VIDEO CONNECTORS - INVERTER, DVI, S-VIDEO
23. DUAL-CHANNEL LVDS
24. IMU, LIGHT SENSOR, BOOTBANGER, SLEEP LED
25. SPIIDEY - KBD,TPAD,HALL EFFECT,PWR BUTTON
26. MMM, BATTERY CURRENT SENSE
27. INTERNAL CONNECTORS - DVD, CARDELOT, HARD DRIVE, LEFT USB/BLUETOOTH
28. SERIAL DEBUG (JOLLY ROGER, PWR/NMI/RESET)
29. USB 2.0
30. MARVELL GIGABIT ETHERNET PHY
31. FIREWIRE A/B PHY
32. FIREWIRE A/B CONNECTORS, PORT POWER LIMITER
33. CPU CORE VOLTAGE POWER SUPPLY
34. 12.8V SYSTEM POWER SUPPLY / PMU POWER SUPPLY
35. 3.3V / 5V SYSTEM POWER SUPPLIES
36. 3.5V / 5V SYSTEM POWER SUPPLIES
37. 1.5V/ 1.8V / 2.5V SYSTEM POWER SUPPLIES
38. SIGNAL CONSTRAINTS (1 OF 3) - DIGITAL/CLK
39. SIGNAL CONSTRAINTS (2 OF 3) - DIGITAL/DIFF
40. SIGNAL CONSTRAINTS (3 OF 3) - POWER NETS
41. REVISION HISTORY (1 OF 1)
42-45. SCHEMATIC REF AND NETLIST REPORTS

SCHEM, MLB, PB17"
12/21/2004

PRODUCTION RELEASED 12/21/04

Apple Computer Inc.

12/21/2004

www.vinafix.vn
PCB SPECS

THICKNESS: 1.2 MM / 0.047 IN
1/2 OZ CU THICKNESS: 0.7 MILS
1.0 OZ CU THICKNESS: 1.4 MILS

IMPEDANCE: 50 OHMS +/- 10%
DIELECTRIC: FR-4
LAYER COUNT: 12
SIGNAL TRACE WIDTH: 4 MILS
SIGNAL TRACE SPACING: 4 MILS
PREPREG THICKNESS: 2-3 MILS

SEE PCB CAD FILES FOR MORE SPECIFIC INFO.

BOARD STACK-UP AND CONSTRUCTION

1. SIGNAL (1/3 OZ + COPPER PLATING)
2. PREPREG (3MIL)
3. LAMINATE (4MIL)
4. PREPREG (3MIL)
5. LAMINATE (4MIL)
6. PREPREG (2MIL)
7. LAMINATE (3MIL)
8. PREPREG (2MIL)
9. LAMINATE (4MIL)
10. PREPREG (3MIL)
11. LAMINATE (4MIL)
12. PREPREG (3MIL)

SEL = LOW; HOST = B PORT; A PORT = 1000OHM TO GND
SEL = HIGH; HOST = A PORT; B PORT = 1000OHM TO GND
MEM_MUXSEL_H<0> AND MEM_MUXSEL_L<0> ARE ACTIVE LOW
MEM_MUXSEL_H<1> AND MEM_MUXSEL_L<1> ARE ACTIVE HIGH

ADDED 0 OHM RESISTORS IN CASE POLARITY IS WRONG
PORT POWER SWITCH

<table>
<thead>
<tr>
<th>STATE</th>
<th>PMU_POWER_UP_L</th>
<th>POWER_UP</th>
<th>DCDC_EN</th>
<th>AC_IN</th>
<th>STUFF R867</th>
<th>NO STUFF R867</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTDOWN</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>READY</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>READY</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

ENABLES PORT POWER WHEN MACHINE IS RUNNING, SHUTDOWN OR WHEN ASLEEP ON AC

- 2.99V +3V_PMU +4.6V_BU +3V_PMU

R894
+3V_PMU +PMUS
1.224V

CRITICAL R751
1/10W

CRITICAL Q67
MOSFET

CRITICAL R743
1/10W

CRITICAL R752
1/10W

SM-1

FERR-250-OHM

400-OHM-EMI

90-OHM-300MA

0.1UF 10V 20%

0.01UF 16V 20%

805

50V 20%

C803

16V 20%

C805

16V 20%

CERM

CRITICAL 10V 330K 1/16W 5%

2N7002DW SOT-363

BAV99DW SOT-363

BAV99DW SOT-363

AND CONNECTION DETECTION CURRENTS

LOGIC GROUND FOR SPEED SIGNALING

THERE'S NO DC PATH BETWEEN

IS PLUGGED TO BETA-ONLY DEVICE,

SO WHEN A BILINGUAL DEVICE

ALL LOCAL GROUNDS PER 1394B SPEC

TO AVOID GROUND OFFSET ISSUE

BREF SHOULD BE HARD CONNECTED TO LOCAL GROUND FOR SPEED SIGNALING

NO STUFF

NOT TO REVEAL OR PUBLISH IN WHOLE OR PART

NOT TO REPRODUCE OR COPY IT

I TO MAINTAIN THE DOCUMENT IN CONFIDENCE

PROPERTY OF APPLE COMPUTER, INC. THE POSSESSOR AGREES TO THE FOLLOWING

III

OF PROPRIETARY PROPERTY

NO REPRODUCTION OR COPY IN WHOLE OR PART

ww.vinafix.vn
VCORE POWER SEQUENCING

- For output order and voltage limits, see table.
- 5V_MAIN
- MAX1717 VID can take 3.7V to 5.7V.

OUTPUT VOLTAGE

<table>
<thead>
<tr>
<th>D4=0</th>
<th>D4=1</th>
<th>D3=0</th>
<th>D3=1</th>
<th>D2=0</th>
<th>D2=1</th>
<th>D1=0</th>
<th>D1=1</th>
<th>V_DAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.300V</td>
<td>1.300V</td>
<td>1.300V</td>
<td>1.300V</td>
<td>0.990V</td>
<td>0.990V</td>
<td>0.990V</td>
<td>0.990V</td>
<td>0.990V</td>
</tr>
</tbody>
</table>

TABLE 5 HEAD

- VCORE_VID<4>
- VCORE_VID<2>
- VCORE_VID<1>
- VCORE_VID<0>

FMAX_CONNECTOR

- MAX1717 GND pin 13
- Leave trace fat and short!!

GROUND SENSE VOLTAGE DIVIDER

- This allows for an offset to the ground sense to adjust the output voltage.
- VOFF = 2.2V with a 0.5 scale factor, hence VOFFSET = 1.7V * (R1/(R1+R2)) and VCORE = VDAC + VOFFSET.

FOR V-STEP:

- When A/B is high (fast): D4-D0 read as-is
- When A/B is low (slow): <=1k-ohm = 0
- >=100k-ohm = 1

If all pull-ups are >=100K and all pull-downs are <=1k, \(V = V' \).
Differential Signals

<table>
<thead>
<tr>
<th>Layer</th>
<th>Signal Name</th>
<th>Differential Pair</th>
<th>Min. Spacing</th>
<th>Min. Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal Layer

- **ER**: 4.3 (Dielectric Constant)
- **W**: 4.0MIL (Trace Width)
- **B**: 12.2MIL (Dist Btw 2 Gnd Planes)
- **T**: 0.7MIL (Trace Thickness)
- **S**: 10.0MIL (Separation of Diff Traces)
- **ZSINGLE**: 51.50ohm
- **ZDIFF**: 99.80ohm

Internal Layer (USB1.1/USB 2.0)

- **ER**: 4.3 (Dielectric Constant)
- **W**: 3.4MIL (Trace Width)
- **B**: 12.2MIL (Dist Btw 2 Gnd Planes)
- **T**: 0.7MIL (Trace Thickness)
- **S**: 10.0MIL (Separation of Diff Traces)
- **ZSINGLE**: 53.37ohm
- **ZDIFF**: 107.17ohm

Signal Constraints - Page 2

NOTICE OF PROPRIETARY PROPERTY

The information contained herein is the proprietary property of Apple Computer, Inc. Any copying, reproduction, disclosure, or usage of this information by anyone other than Apple Computer, Inc. is an infringement of Apple Computer, Inc's copyright. The information contained herein may not be disclosed to or used by any other person or entity if the recipient is not an employee of Apple Computer, Inc. upon which this document is based.

APPLE COMPUTER INC.

D 051-6694 B

A 38 45
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_ADDR<5></td>
<td>MEM_ADDR<5></td>
<td>MEM_ADDR<5></td>
<td>MEM_ADDR<5></td>
</tr>
<tr>
<td>MEM_ADDR<4></td>
<td>MEM_ADDR<4></td>
<td>MEM_ADDR<4></td>
<td>MEM_ADDR<4></td>
</tr>
<tr>
<td>MEM_ADDR<3></td>
<td>MEM_ADDR<3></td>
<td>MEM_ADDR<3></td>
<td>MEM_ADDR<3></td>
</tr>
<tr>
<td>MEM_ADDR<2></td>
<td>MEM_ADDR<2></td>
<td>MEM_ADDR<2></td>
<td>MEM_ADDR<2></td>
</tr>
<tr>
<td>MEM_ADDR<1></td>
<td>MEM_ADDR<1></td>
<td>MEM_ADDR<1></td>
<td>MEM_ADDR<1></td>
</tr>
<tr>
<td>MEM_ADDR<0></td>
<td>MEM_ADDR<0></td>
<td>MEM_ADDR<0></td>
<td>MEM_ADDR<0></td>
</tr>
<tr>
<td>MEM_BA<1..0></td>
<td>MEM_BA<1..0></td>
<td>MEM_BA<1..0></td>
<td>MEM_BA<1..0></td>
</tr>
<tr>
<td>MEM_BA<0></td>
<td>MEM_BA<0></td>
<td>MEM_BA<0></td>
<td>MEM_BA<0></td>
</tr>
<tr>
<td>MEM_DATA<58></td>
<td>MEM_DATA<58></td>
<td>MEM_DATA<58></td>
<td>MEM_DATA<58></td>
</tr>
<tr>
<td>MEM_DATA<48></td>
<td>MEM_DATA<48></td>
<td>MEM_DATA<48></td>
<td>MEM_DATA<48></td>
</tr>
<tr>
<td>MEM_DATA<46></td>
<td>MEM_DATA<46></td>
<td>MEM_DATA<46></td>
<td>MEM_DATA<46></td>
</tr>
<tr>
<td>MEM_DATA<22></td>
<td>MEM_DATA<22></td>
<td>MEM_DATA<22></td>
<td>MEM_DATA<22></td>
</tr>
<tr>
<td>MEM_DATA<11></td>
<td>MEM_DATA<11></td>
<td>MEM_DATA<11></td>
<td>MEM_DATA<11></td>
</tr>
<tr>
<td>MEM_DATA<10></td>
<td>MEM_DATA<10></td>
<td>MEM_DATA<10></td>
<td>MEM_DATA<10></td>
</tr>
</tbody>
</table>