PCB SPECS

THICKNESS : 1.2 MM / 0.047 IN
1/2 OZ CU THICKNESS: 0.7 MILS
1.0 OZ CU THICKNESS: 1.4 MILS

IMPEDANCE : 50 OHMS +/- 10%
DIELECTRIC: FR-4
LAYER COUNT: 12
SIGNAL TRACE WIDTH: 4 MILS
SIGNAL TRACE SPACING: 4 MILS
PREPREG THICKNESS: 2-3 MILS

SEE PCB CAD FILES FOR MORE SPECIFIC INFO.

BOARD STACK-UP AND CONSTRUCTION

1. PREPREG (3MIL)
 SIGNAL (1/3 OZ + COPPER PLATING)

2. PREPREG (3MIL)
 GROUND (1/2 OZ)

3. LAMINATE (4MIL)
 SIGNAL (1/2 OZ)

4. PREPREG (3MIL)
 SIGNAL (1/2 OZ)

5. LAMINATE (4MIL)
 GROUND (1/2 OZ)

6. PREPREG (2MIL)
 CUT POWER PLANE (1 OZ)

7. LAMINATE (3MIL)
 CUT POWER PLANE (1 OZ)

8. PREPREG (2MIL)
 GROUND (1/2 OZ)

9. LAMINATE (4MIL)
 SIGNAL (1/2 OZ)

10. PREPREG (3MIL)
 SIGNAL (1/2 OZ)

11. LAMINATE (4MIL)
 GROUND (1/2 OZ)

12. PREPREG (3MIL)
 SIGNAL (1/3 OZ + COPPER PLATING)
SEL = LOW; HOST = B PORT; A PORT = 1000ΩM TO GND
SEL = HIGH; HOST = A PORT; B PORT = 1000ΩM TO GND
MEM_MUXSEL_H<0> AND MEM_MUXSEL_L<0> ARE ACTIVE LOW
MEM_MUXSEL_H<1> AND MEM_MUXSEL_L<1> ARE ACTIVE HIGH

ADDED 0 ΩM RESISTORS IN CASE POLARITY IS WRONG
null
NOTE: Target differential impedance for Line To Line: 15 mils
For 4.15V cells, $V_{CTL} = 0.123 \times \text{REFIN}$

$V = \text{CELLS} \times (4.096 + (0.4096 \times \frac{V}{V_{CELL}}))$
<table>
<thead>
<tr>
<th>Group</th>
<th>Signal Name</th>
<th>Rise_Trap</th>
<th>Pulse_Param</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXBUS</td>
<td>I2C_GPIO42</td>
<td>250.0000</td>
<td>200.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0000</td>
<td>100.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200.0000</td>
<td>200.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250.0000</td>
<td>250.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300.0000</td>
<td>300.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350.0000</td>
<td>350.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400.0000</td>
<td>400.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450.0000</td>
<td>450.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500.0000</td>
<td>500.0000</td>
<td>3</td>
</tr>
</tbody>
</table>

DIGITAL SIGNALS GROUP 4/5

- **Control**
 - MEM_CAS_L
 - MEM_RAS_L
 - MEM_CKE<3..0>
 - RAM_CS_L<3..0>
 - MEM_CS_L<3..0>
 - MEM_DQS<7>
 - RAM_DQM_B<6>
 - RAM_DQM_A<6>
 - MEM_DQM<6>
 - RAM_DQS_A<6>
 - MEM_DQS<6>
 - RAM_DATA_B<55..48>
 - RAM_DATA_A<55..48>
 - MEM_DATA<55..48>
 - RAM_DQM_A<5..4>
 - RAM_DQS_B<5..4>
 - RAM_DQS_A<5..4>
 - MEM_DQS<5..4>
 - RAM_DATA_B<47..32>
 - RAM_DQM_B<3..2>
 - RAM_DQS_A<3..2>
 - RAM_DATA_A<31..16>
 - MEM_DATA<31..16>
 - RAM_DQS_B<1>
 - MEM_DQS<1>
 - RAM_DATA_B<15..8>
 - RAM_DQM_B<0>
 - RAM_DQM_A<0>
 - MEM_DQS<0>
 - MEM_DATA<7..0>

CPU

-CPU_TT<0..4>
- CPU_HIT_L
- CPU_GBL_L
- CPU_DRDY_L
- CPU_DATA<0..31>
- CPU_ADDR<0..31>
- CPU_AACK_L
- CPU_TA_L
- CPU_BR_L
- FIREWIRE
- MAP31
- CRYSTALS
- SHT

CLOCK LINE CONSTRAINTS

- GPU_FBCLK0
- INT_AGP_FB_IN
- INT_AGP_FB_OUT
- INT_REF_CLK_IN
- INT_REF_CLK_OUT
- SYSCLK_DDRCLK_A1_L
- SYSCLK_DDRCLK_A1
- SYSCLK_DDRCLK_A0
- SYSCLK_DDRCLK_B0_UF
- SYSCLK_DDRCLK_A1_UF
- INT_CPUFB_OUT_NORM
- SYSCLK_CPU

MEMORY

- DDRCLK_B1
- DDRCLK_B0
- DDRCLK_A1
- DDRCLK_A0

SHOULD BE AT MOST 4 VIAS FOR CLK
THERE'S ANOTHER 280MIL LEG
<table>
<thead>
<tr>
<th>Digital Signals (cont'd)</th>
<th>PCI</th>
<th>Ultra ATA-1</th>
<th>IDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGP</td>
<td>PCI</td>
<td>Ultra ATA-1</td>
<td>IDE</td>
</tr>
<tr>
<td>AGP VTSX1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGP VTSX9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra ATA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGNAL CONSTRAINTS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTERNAL LAYER
- \(E_R = 4.3 \) (DIELECTRIC CONSTANT)
- \(W = 4.0 \) MIL (TRACE WIDTH)
- \(B = 12.2 \) MIL (DIST BETW 2 GND PLANES)
- \(T = 0.7 \) MIL (TRACE THICKNESS)
- \(S = 10 \) MIL (SEPARATION OF DIFF TRACES)
- \(z_{single} = 51.570 \) OHM
- \(z_{diff} = 99.860 \) OHM

For Firewire:
- \(E_R = 4.3 \) (DIELECTRIC CONSTANT)
- \(W = 3.4 \) MIL (TRACE WIDTH)
- \(B = 12.2 \) MIL (DIST BETW 2 GND PLANES)
- \(T = 0.7 \) MIL (TRACE THICKNESS)
- \(S = 10 \) MIL (SEPARATION OF DIFF TRACES)
- \(z_{single} = 53.370 \) OHM
- \(z_{diff} = 107.170 \) OHM

INTERNAL LAYER (USB1.1/USB 2.0)
- \(E_R = 4.3 \) (DIELECTRIC CONSTANT)
- \(W = 4.0 \) MIL (USB 1.1)/ 5.0 (USB 2.0) (TRACE WIDTH)
- \(B = 12.2 \) MIL (DIST BETW 2 GND PLANES)
- \(T = 0.7 \) MIL (TRACE THICKNESS)
- \(S = 10 \) MIL (SEPARATION OF DIFF TRACES)
- \(z_{single} = 51.500 \) OHM (USB 1.1)/ 46.400 (USB 2.0)
- \(z_{diff} = 89.300 \) (USB 1.1)/ 89.400 (USB 2.0)

Differential Signals

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>DIFFERENTIAL</th>
<th>S</th>
<th>DIFF</th>
<th>DIFFERENTIAL</th>
<th>S</th>
<th>DIFF</th>
<th>DIFFERENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDS_D0</td>
<td>TMDS_DP<0></td>
<td>25</td>
<td>19</td>
<td>TMDS_D1</td>
<td>13</td>
<td>28</td>
<td>TMDS_DP<1></td>
</tr>
<tr>
<td>TMDS_D1</td>
<td>TMDS_DP<1></td>
<td>25</td>
<td>19</td>
<td>TMDS_D2</td>
<td>13</td>
<td>28</td>
<td>TMDS_DP<2></td>
</tr>
<tr>
<td>TMDS_D2</td>
<td>TMDS_DP<2></td>
<td>25</td>
<td>19</td>
<td>TMDS_D3</td>
<td>13</td>
<td>28</td>
<td>TMDS_DP<3></td>
</tr>
</tbody>
</table>

POWER
- \(V_{CC} = 5.00 \) V (USB 1.1)/ 3.30 (USB 2.0)
- \(V_{CC} = 12.00 \) V (USB 1.1)/ 15.00 (USB 2.0)

NOTICE OF PROPRIETARY PROPERTY
The information contained herein is the proprietary property of Apple Computer, Inc. and is furnished to the governmental agency or its contractor for the sole purpose of facilitating the development of the governmental agency's system. It may not be reproduced or distributed in whole or in part for any other purpose without the express written permission of Apple Computer, Inc.

www.vinafix.vn
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTIONAL TEST POINTS</td>
<td>FUNCTIONAL TEST POINTS</td>
<td>FUNCTIONAL TEST POINTS</td>
<td>FUNCTIONAL TEST POINTS</td>
</tr>
<tr>
<td>JTAG_ASIC_TDO</td>
<td>JTAG_CPU_TDO_TP</td>
<td>VGA_B</td>
<td>NEC_RIGHT_USB_OVERCURRENT</td>
</tr>
<tr>
<td>CPU_CHKSTP_OUT_L</td>
<td>JTAG_CPU_TMS</td>
<td>LVDS_L0P</td>
<td>SHT</td>
</tr>
<tr>
<td>JTAG_ASIC_TCK</td>
<td>CPU_SRESET_L</td>
<td>LVDS_L1N</td>
<td>COMM_GPIO_L</td>
</tr>
<tr>
<td>JTAG_ASIC_TMS</td>
<td>INT_I2C_DATA1</td>
<td>LVDS_L2N</td>
<td>COMM_DTR_L</td>
</tr>
<tr>
<td>FUNC_TEST=YES</td>
<td>FUNC_TEST=YES</td>
<td>INT_I2C_DATA2</td>
<td>ROM_RW_L</td>
</tr>
<tr>
<td>FUNC_TEST=YES</td>
<td>FUNC_TEST=YES</td>
<td>INT_I2C_CLK2</td>
<td>SND_SCLK</td>
</tr>
<tr>
<td>FUNC_TEST=YES</td>
<td>FUNC_TEST=YES</td>
<td>BT_USB_DP</td>
<td>SND_SCLK</td>
</tr>
<tr>
<td>FUNC_TEST=YES</td>
<td>FUNC_TEST=YES</td>
<td>ID_290</td>
<td>DCDC_EN</td>
</tr>
<tr>
<td>INT_MOD_DTI</td>
<td>JTAG_CPU_TRST_L</td>
<td>MODEM_USB_DP</td>
<td>ADAPTER_DET</td>
</tr>
<tr>
<td>MAIN_RESET_L</td>
<td>FUNCTIONAL TEST POINTS</td>
<td>NEC_LEFT_USB_OVERCURRENT</td>
<td>PWR_BUTTON_L</td>
</tr>
<tr>
<td>FUNCTIONAL TEST POINTS</td>
<td>FUNCTIONAL TEST POINTS</td>
<td>FUNCTIONAL TEST POINTS</td>
<td>APPLE COMPUTER INC.</td>
</tr>
<tr>
<td>I294</td>
<td>I298</td>
<td>FUNCTIONAL TEST POINTS</td>
<td>www.vinafix.vn</td>
</tr>
</tbody>
</table>
REVISION HISTORY

12/11/03
1) ADD CPU_TEMP_DM NETNAME AND CPU_THERM_DM
2) ADD PLL CONFIG STUFFING FOR NEW CPU
3) R751 VALUE FROM 10K OHM CHANGE TO 604 OHM
4) D8 FROM 1N5227B CHANGE TO BZX84C2V7LT1
5) GPU_DVOD<0..12> NETNAME CHANGE TO GPU_DVOD<0..23>

12/15/03
1) ADD R867 (0 OHM) FOR IPOD ACTION
2) ADD C935 (0.1UF)
3) 09/17/2004

09/17/2004
1) REPLACE BOOT BANGER EEPROM U32 WITH 32KX M24256B FUNC_TP_WRONG_SIDE.LOG
2) CHANGE TEST POINT FUNC_TEST=NO FOR FUNC_TP_WRONG_SIDE.LOG
3) ADD R465 FROM MF 1/16W TO FF 1/10W
4) CHANGE PIN 11 OF J11 TO NC
5) CHANGE PIN 4 (DCDC_EN) ON J11 TO NEC_RIGHT_USBOVERCURRENT
6) CHANGE JTAG_ASIC_TDI TO CONNECT TO ETHERNET PHY'S TDI
7) CHANGE JTAG_ASIC_TDO_TP TO JTAG_ASIC_TDO AND MOVED IT TO INTREPID'S TDO
8) ADD R608 TO DISCONNECT INT_GPIO0 FROM CG_FSEL
9) ADD R284 AND R604 TO ADD OPTION FOR PD_L OF U42 (CLOCK CHIP) TO BE DRIVEN BY JTAG_ASIC_TDO FROM INTREPID
10) ADD CPU AVDD LDO (U6)

09/20/2004
1) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания
2) ADD R676 (1K0,1000OHM,STAB)

09/21/2004
1) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания
2) ADD R676 (1K0,1000OHM,STAB)

09/22/2004
1) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания
2) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания

09/23/2004
1) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания
2) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания

09/24/2004
1) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания
2) ADD R676 (1K0,1000OHM,STAB) ON DCDC питания

10/04/2004
1) QUINTA EE, PLEASE ADD SCHEMATIC UPDATE DETAILS HERE.
2) UPDATE DIFF NET_SPACING_TYPE PROPERTY ON POWER SUPPLY SENSE AND THERMAL DIODE DIFF PAIRS
3) CHANGED R657 (EXTPLL_SDWNPOL BOOT STRAP) TO NO STUFF AND REMOVED NO STUFF FROM R153
4) FIXED MISSED CONNECTION WITH MAXBUS_SLEEP TO CPU
5) CHANGED GPU_THERM_DM TO GPU_THERM_DM_TP
6) CHANGED CPU_TEMP_DM TO CPU_THERM_DM
7) CHANGED CPU_TEMP_DM TO CPU_THERM_DM
8) CHANGED CPU TEMP_DM TO CPU_THERM_DM

10/05/2004
1) ADD VPO (0 OHM)

09/24/2004
1) REMOVED ALTERNATE BOM OPTION FROM ALTERNATE ETHERNET CRYSTALS
2) CHANGED CPU PLL CONFIG TO 9X HIGH AND 5X LOW
3) REMOVED XW11 - JUMPER ON 1.8V SWITCHER OUTPUT
4) 21) CHANGED MAX VIA COUNT ON ALL AGP STB NETS TO 5 TO CLEAR DRCS
5) CHANGED FIREWIRE OSCILLATOR (G1) TO NEW PREFERRED SUNNY PART
6) UPDATE DIFF NET_SPACING_TYPE PROPERTY ON POWER SUPPLY SENSE AND THERMAL DIODE DIFF PAIRS
7) CHANGED R657 (EXTPLL_SDWN_POL BOOT STRAP) TO NO STUFF AND REMOVED NO STUFF FROM R153
8) ADD R608 TO DISCONNECT INT_GPIO0 FROM CG_FSEL
9) ADD R284 AND R604 TO ADD OPTION FOR PD_L OF U42 (CLOCK CHIP) TO BE DRIVEN BY JTAG_ASIC_TDO FROM INTREPID
10) ADD CPU AVDD LDO (U6)

10/04/2004
1) QUINTA EE, PLEASE ADD SCHEMATIC UPDATE DETAILS HERE.
2) UPDATE DIFF NET_SPACING_TYPE PROPERTY ON POWER SUPPLY SENSE AND THERMAL DIODE DIFF PAIRS
3) CHANGED R657 (EXTPLL_SDWNPOL BOOT STRAP) TO NO STUFF AND REMOVED NO STUFF FROM R153
4) FIXED MISSED CONNECTION WITH MAXBUS_SLEEP TO CPU
5) CHANGED GPU_THERM_DM TO GPU_THERM_DM_TP
6) CHANGED CPU_TEMP_DM TO CPU_THERM_DM
7) CHANGED CPU TEMP_DM TO CPU_THERM_DM
8) CHANGED CPU TEMP_DM TO CPU_THERM_DM
9) CHANGED CPU TEMP_DM TO CPU_THERM_DM
10) CHANGED CPU TEMP_DM TO CPU_THERM_DM

10/05/2004
1) ADD VPO (0 OHM)

09/22/2004
1) ADD R878 AND R879 (0 OHM; NO_STUFF)
2) ADD A 0-OHM RESISTOR TO BY-PASS THE N-FET ON EACH FAN

09/21/2004
1) ADD R878 (470K OHM; NO_STUFF)
2) ADD R876 (470K OHM; NO_STUFF)
3) ADD R877 (10K OHM)
4) ADD R877 (10K OHM)

09/20/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)

09/19/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)

09/17/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)

09/16/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)

09/15/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)

09/14/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)

09/13/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)

09/12/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)

09/11/2004
1) ADD R876 (10K OHM)
2) ADD R876 (10K OHM)
3) ADD R876 (10K OHM)
4) ADD R876 (10K OHM)