<table>
<thead>
<tr>
<th>BOM Option</th>
<th>QTY</th>
<th>Description</th>
<th>Reference Set</th>
<th>Critical</th>
<th>BOM Option</th>
</tr>
</thead>
</table>
| Bar Code Labels / EEEE #'s
| 1 | 1 | 825-7563 CRITICAL1 EEEE:DK9L | 825-7563 CRITICAL1 EEEE:DLCL | 825-7563 CRITICAL1 EEEE:DLCQ | 825-7563 CRITICAL1 EEEE:DLCR |

| Sub-BOMs
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>825-7563</td>
<td>1</td>
<td>CMN PTS,PCBA,MLB,K78</td>
<td>1607-8084 CMNPTS</td>
<td>085-2714 K78 MLB DEVELOPMENT BOM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apple Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>051-8871</td>
</tr>
</tbody>
</table>

NOTICE OF PROPRIETARY PROPERTY:

Proprietary Property of Apple Computer, Inc. All rights reserved. No portion of this document may be reproduced or transmitted in any form without prior written consent. The information contained herein is the sole and exclusive property of Apple Computer, Inc. Unauthorized use or disclosure may subject the user to civil and criminal penalties. This document contains unpublished proprietary information which is protected by copyright and other intellectual property laws.

SYNC_MASTER=K21_MLB
SYNC_DATE=11/16/2010
X78 BOM GROUPS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0679</td>
<td>138S0678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>377S0107</td>
<td>ONsemi alt to Semtech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>376S0972</td>
<td>376S0612</td>
<td>ALL</td>
<td></td>
</tr>
</tbody>
</table>

Alternate Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>VENDOR</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>138S0691</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>138S0676</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmable Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>338S0895</td>
<td>1</td>
<td>U49001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>337S3997</td>
<td>1</td>
<td>U9330</td>
<td>CRITICAL</td>
<td></td>
</tr>
</tbody>
</table>

DDR3:

- SAMSUNG_4GB
- SAMSUNG_2GB
- ELPIDA_4GB
- MICRON_2GB
- HYNIX_4GB

T29:

- T29ROM:BLANK
- T29ROM:PROG

T29 MCU:

- IC, MCU: 32B, LPC1112A, 16KB/2KB, HVQFN25
- T29MCU:BLANK

EEPROM:

- 32KBIT, 2X3QFN

PARTS:

- All
- All
- All
- All

Diodes:

- All
- Diodes alt to Toshiba

Inductor:

- All
- 152S1295
- 152S1462 Toko alt to NEC

Table:

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>337S4100</td>
<td></td>
</tr>
<tr>
<td>337S4092</td>
<td>EARLY 1.5GHZ CPU SAMPLES</td>
</tr>
</tbody>
</table>

Module Parts

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITICALU61001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T29ROM:PROG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3000,U3010,U3020,U3030</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITICALU3100,U3110,U3120,U3130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC, SDRAM, 1GBIT, DDR3-1333, 78P FBGA, V68A-D, MICRON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC, SDRAM, 2GBIT, DDR3-1333, 78P FBGA, C-DIE, ELPIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC, SDRAM, 2GBIT, DDR3-1333, 78P FBGA, B-DIE, HYNIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3200, U3210, U3220, U3230</td>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITICALU3200, U3210, U3220, U3230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC, SDRAM, 1GBIT, DDR3-1333, 78P FBGA, T-DIE, HYNIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BKLT:

- ENG
- PROD
- SMC_DEBUG_YES
- XDP
- VREFMRGN
- NOT

Additional Information:

- BRANCH CENTER
- DRAWING NUMBER SIZE
- DRAWING NUMBER
- SIZE
- 051-8871
- 2.5.0
Functional Test Points

- **J4001: AirPort / BT Connector**
- **J4002: Fan Connector**
- **J4501: SATA 5G Connector**
- **J4701: LDO Connector**
- **J5701: HDBM Connector**
- **J6955: HALL EFFECT Connector**
- **J6900: DC-in Connector**
- **J6903: Speaker Connector**
- **J6905: Battery Connector**
- **J6906: Internal I/O Connector**

NO_TEST Nets

Misc. Voltages & Control Signals

- **J6100: LPC+SPI Connector**

Apple Inc.

X.5.5

Not To Reproduce Or Copy It

Copyright © 2004 Apple Inc. All Rights Reserved

Proprietary Property of Apple Computer, Inc.

Made in China
PROCESSOR MICRO2-XDP CONNECTOR
NOTE: This is not the standard XDP pinout
Use with 920-0782 Adapter Flex to support chipset debug

PCH MICRO2-XDP CONNECTOR
NOTE: This is not the standard XDP pinout
Use with 920-0782 Adapter Flex to support chipset debug

WARNING: Even pins should be facing edge of the board.
The circuit below handles CPU and VTT power during S0->S3->S0 transitions, as well as isolating the CPU's SM_DRAMRST# output from the SO-DIMMs when necessary.

NOTE: In the event of a S3->S0 transition ISOLATE_CPU_MEM_L will still be asserted on next S0->S3 transition.

MEM_RESET_L = !ISOLATE_CPU_MEM_L + CPU_MEM_RESET_L

MEMVTT_EN = ISOLATE_CPU_MEM_L + PLT_RESET_L * PM_SLP_S3_L

ISOLATE_CPU_MEM_L GPIO state during S3<->S0 transitions determines behavior of signals.

The circuit below handles CPU and VTT power during S0->S3->S0 transitions, as well as isolating the CPU's SM_DRAMRST# output from the SO-DIMMs when necessary.
Current numbers from Vendor slide (REDACTED power measure 1.ppt), emailed 6/21/2010, TDP @ 90C.

EDP: 3000 mA
2250 mA (Dual Port)
2100 mA (Single Port)

C3701 CERM-X5R
C3710 CERM-X5R
10UF 10UF
6.3V 6.3V
20% 20%

C3705 1.0UF 1.0UF
0402 0402
X5R X5R
20% 20%

R3720 10K 10K
201 201
MF MF
5% 5%

C3714 1.0UF 1.0UF
0201-MUR 0201-MUR
X5R X5R
6.3V 6.3V
20% 20%

R3724 10K 10K
MF MF
1/20W 1/20W
5% 5%

T29_GPIO<4>
T29_GPIO<5>
T29_GPIO<10>
T29_GPIO<7>
T29_GPIO<11>
Current limit (R4600): 2.17-2.59A

USB/SMC Debug Mux

USB Port Power Switch

Right USB Port A

The information contained herein is the proprietary property of Apple Computer, Inc. All rights reserved. This document is not to be reproduced or copied in whole or part. It is to be maintained in confidence by the possessor and is not to be disclosed or published in whole or part.

Apple Inc. 051-8871 D
2.5.0

www.vinafix.vn
NOTE: Unused pins have "SMC_Pxx" names. Unused pins designed as inputs require pull-ups.
SMC Reset "Button", Supervisor & AVREF Supply

SMC Reset "Button"
- R5000
- SMC_XTAL
- TP_SMC_RSTGATE_L

Supervisor & AVREF Supply
- Used on mobiles to support SMC reset via keyboard.
- MR1* and MR2* must both be low to cause manual reset.
- PLACEMENT_NOTE: Place R5001 on BOTTOM side

Mobiles:
- 3.42V

Desktops:
- 5V

Warning:
- Be cautious when handling internal pull-ups as they can affect normal function.

Internal Pull-Up Resistors
- Q5040
- SSM6N37FEAPE
- R5095

Additional Notes
- BATLOW# Isolation
- Internal 20K pull-up on PM_BATLOW_L in PCH.
- Below connections are different from K91

Other Components
- SMC_RESETGATE_L
- SMC_PME_S4_WAKE_L
- SMC_GFX_THROTTLE_L
- SMC_S4_WAKESRC_EN
- PM_THRMTRIP_L_R
- NC_SMC_FAN_1_TACH
- NC_SMC_FAN_2_TACH
- NC_SMC_FAN_2_CTL
- NC_SMC_FAN_3_TACH
- NC_SMC_FAN_3_CTL
- SMC_BMON_MUX_SEL
- SMC_BMON_ISENSE
- SMC_PBUS_VSENSE
- SMC_WLAN_ISENSE
- SMC_LCDBKLT_ISENSE
- SMC_CPUVCCIO_ISENSE
- CPU_PROCHOT_L
- SMC_1V5S3_ISENSE
- SMC_GFX_VSENSE
- SMC_DCIN_ISENSE
- SMC_BC_ACOK
- SMC_HS_COMPUTING_ISENSE
- SMC_GFX_OVERTEMP_L
- SMC_ADC14
- SMC_FAN_1_TACH
- SMC_PA0_PU
- PM_THRMTRIP_L_R

Schematic Details
- MAKE_BASE = TRUE
- SOT-563
- NOSTUFF
- X5R
- MF-LF
- 1/20W
- 5%
- 201
- MF
- 5%
- 1/20W
- 10K
- 100K
- 0.47UF
- 201
- 5%
- 15PF
- 201
- 5%
- 201
- 5%
- 21
- 5%
- 10uF
- 201
- 5%
- 1/10W
- 201
- 1/10W
- 201
- 1/20W
- 1/20W
- 1/20W
Replacing caps with 100K PD on ISENSE SMC inputs
FAN CONNECTOR
To detect Keyboard backlight, SMC will tristate and read SMC_SYS_KBDLED:

If HIGH, keyboard backlight not present
If LOW, keyboard backlight present

R5853 always stuffed, R5854 only grounded when KB BL flex connected.

www.vinafix.vn
CPU=Sandy Bridge ULV, AXG=GT2
CPU VCCIO (1.05V S0) Regulator

- VOLTAGE=5V
- MIN_NECK_WIDTH=0.2 mm
- MIN_LINE_WIDTH=0.6 mm
- R7603
- 0
- 201
- MF
- 5%
- 1/20W
- C7619
- 62UF
- CRITICAL
- ELEC
- 20%
- 2V
- 44 73
- 44 73
- R7630
- 1/10W
- MF-LF
- 603
- 0
- 2
- 1
- C7630
- 1UF
- X5R
- 16V
- 10%
- 15
- 10
- 11
- 11V
- 20%
- 0612
- MF
- 1W
- 1%
- POWER_SUPPLY_CURRENT=21A Max Output
- PP_CPUVCCIO_S0_REG: f = 300 kHz
- Vout = 1.05V
- Vout = 0.5V * (1 + Ra / Rb)
- OCP = 25.6A
- OCP = R7641 x 8.5uA / R7640

Apple Inc. 051-8871 D
© Apple Inc. 2005. All rights reserved.
NOTICE OF PROPRIETARY PROPERTY:
This sheet contains confidential, proprietary information and trade secrets. All information on this sheet is the property of Apple Inc.

Sync_master=K21_MLB Sync_date=12/13/2010
The Possessor agrees to the following:

1. To maintain this document in confidence.
2. Not to reproduce or copy it.
3. Not to reveal or publish it in whole or part.

Notice of Proprietary Property:
© Apple Inc. 2005. All rights reserved.

Apple Inc.

www.vinafix.vn
1.8V S0 Regulator

\[V_{out} = 0.8V \times (1 + \frac{R_a}{R_b}) \]

Max Current = 1.8A
Freq = 1 MHz

1.5V S0 LDO

Vout = 1.5V
Max Current = 1.0A

1.05V S0 LDO

Vout = 1.05V
Max Current = 0.02A

Misc Power Supplies

77 OF 109
Some signals require 27.4-ohm single-ended impedance. Most CPU signals with impedance requirements are 50-ohm single-ended.

NOTE: 7 mil gap is for VCCSense pair, which Intel says to route with 7 mil spacing without specifying a target impedance.

NOTE: CPU_XDP_BPM physical constraint is to prevent routing on outer layers.
DQ/DQS/A/BA/cmd signal spacing is 4x dielectric, CLK is 5x dielectric.

CONTROL signals should be matched within [CLK-2.54mm] to [CLK+0.0mm] of CLK pairs. per Huron River SFF DG rev1.0 (#438297).

DDR3:

Memory Bus Spacing Group Assignments

Spacing Rule Sets

Memory to Power Spacing

Memory to GND Spacing

Memory Bus Spacing Group Assignments

Memory Net Properties

Memory Constraints
DP/T29 Connector Signal Constraints

T29 I2C Signal Constraints

NOTE: DisplayPort Physical/Spacing Constraints provided by Chipset or GPU page.

DisplayPort Signal Constraints

T29 Net Properties

T29/DP Net Properties

T29 IC Net Properties

T29 IC Net Properties

SOURCE: Bill Cornelius's T29 Routing Notes
<table>
<thead>
<tr>
<th>SMBus Charger Net Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET_TYPE</td>
</tr>
<tr>
<td>SMBUS_SMC_B_SA_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_B_SA_SDA</td>
</tr>
<tr>
<td>SMBUS_SMC_B_SA_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_B_SA_SDA</td>
</tr>
<tr>
<td>SMBUS_SMC_MGMT_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_MGMT_SDA</td>
</tr>
</tbody>
</table>

SMBUS_SMC_A_S3_SCL	SMBUS_SMC_A_S3_SCL
SMBUS_SMC_A_S3_SDA	SMBUS_SMC_A_S3_SDA
SMBUS_SMC_A_S3_SCL	SMBUS_SMC_A_S3_SCL
SMBUS_SMC_A_S3_SDA	SMBUS_SMC_A_S3_SDA

PCHR_CSI_N	1TO1_DIFFPAIR
PCHR_CSI_P	1TO1_DIFFPAIR
PCHR_CSI_N	1TO1_DIFFPAIR
PCHR_CSI_P	1TO1_DIFFPAIR

SMBUS_SMC_B_SA_SCL	SMBUS_SMC_B_SA_SCL
SMBUS_SMC_B_SA_SDA	SMBUS_SMC_B_SA_SDA
SMBUS_SMC_B_SA_SCL	SMBUS_SMC_B_SA_SCL
SMBUS_SMC_B_SA_SDA	SMBUS_SMC_B_SA_SDA

NOTICE OF PROPRIETARY PROPERTY:

This document contains proprietary information of Apple Inc. and is protected by copyright laws. No part of this document may be reproduced in any form or by any means without the written consent of Apple Inc.
Allow 0.127 mm necks for >0.127 mm lines for ARD fanout.

Memory Constraint Relaxations

- OVERRIDE OVERRIDE OVERRIDE OVERRIDE OVERRIDE OVERRIDE OVERRIDE OVERRIDE
- MEM_40S * 400 MIL
- 0.09 MM

Audio Net Properties
- AREA_TYPE SPACING_RULE_SET
- NET_SPACING_TYPE1 NET_SPACING_TYPE2
- GND
- MEM_DQS
- GND_P2MM
- GND_P2MM
- CPU_VCC
- SENSE
- SATA
- PCIE
- GND_P2MM
- CPU_COMP
- THERM
- =1:1_DIFFPAIR
- =1:1_DIFFPAIR
- =55_OHM_SE
- =55_OHM_SE
- THERM_1TO1_55S

Misc Net Properties
- AREA_TYPE SPACING_RULE_SET
- NET_SPACING_TYPE1 NET_SPACING_TYPE2
- USB
- ENET
- SATA
- =1:1_DIFFPAIR
- =1:1_DIFFPAIR
NOTE: These are Intel recommended impedances for PEG, unused on K90i.

NOTE: 110_DIFF is 110-ohms differential impedance on outer layers and 105-ohms on inner layers.

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Layers</th>
<th>Minimum Neck Width</th>
<th>Maximum Neck Length</th>
<th>Pair Primary Gap</th>
<th>Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>100_OHM_DIFF</td>
<td>ISL4, ISL9</td>
<td>0.085 mm</td>
<td>0.250 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
</tr>
<tr>
<td>110_OHM_DIFF</td>
<td>ISL4, ISL9</td>
<td>0.071 mm</td>
<td>0.300 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
</tr>
<tr>
<td>110_OHM_DIFF</td>
<td>*</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
</tr>
<tr>
<td>100_OHM_DIFF</td>
<td>ISL3, ISL10</td>
<td>0.074 mm</td>
<td>0.250 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
</tr>
<tr>
<td>80_OHM_DIFF</td>
<td>ISL3, ISL10</td>
<td>0.110 mm</td>
<td>0.170 mm</td>
<td>0.180 mm</td>
<td>0.180 mm</td>
</tr>
<tr>
<td>85_OHM_DIFF</td>
<td>ISL4, ISL9</td>
<td>0.115 mm</td>
<td>0.170 mm</td>
<td>0.180 mm</td>
<td>0.180 mm</td>
</tr>
<tr>
<td>80_OHM_DIFF</td>
<td>*</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
</tr>
<tr>
<td>55_OHM_SE</td>
<td></td>
<td>0.090 mm</td>
<td>0.130 mm</td>
<td>0.130 mm</td>
<td>0.130 mm</td>
</tr>
<tr>
<td>48_OHM_SE</td>
<td></td>
<td>0.097 mm</td>
<td>0.120 mm</td>
<td>0.160 mm</td>
<td>0.160 mm</td>
</tr>
<tr>
<td>40_OHM_SE</td>
<td></td>
<td>0.090 mm</td>
<td>0.120 mm</td>
<td>0.160 mm</td>
<td>0.160 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Layers</th>
<th>Minimum Neck Width</th>
<th>Maximum Neck Length</th>
<th>Pair Primary Gap</th>
<th>Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>90_OHM_DIFF</td>
<td>ISL4, ISL9</td>
<td>0.115 mm</td>
<td>0.210 mm</td>
<td>0.200 mm</td>
<td>0.200 mm</td>
</tr>
<tr>
<td>85_OHM_DIFF</td>
<td>*</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
</tr>
<tr>
<td>72_OHM_DIFF</td>
<td>ISL3, ISL10</td>
<td>0.135 mm</td>
<td>0.135 mm</td>
<td>0.210 mm</td>
<td>0.210 mm</td>
</tr>
</tbody>
</table>

NOTE: 100_DIFF_BGA is 100-ohms differential impedance on outer layers and 95-ohms on inner layers.

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Layers</th>
<th>Minimum Neck Width</th>
<th>Maximum Neck Length</th>
<th>Pair Primary Gap</th>
<th>Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>100_DIFF_BGA</td>
<td>ISL3, ISL4</td>
<td>0.075 mm</td>
<td>0.125 mm</td>
<td>0.125 mm</td>
<td>0.125 mm</td>
</tr>
<tr>
<td>90_DIFF_BGA</td>
<td>ISL9, ISL10</td>
<td>0.075 mm</td>
<td>0.125 mm</td>
<td>0.125 mm</td>
<td>0.125 mm</td>
</tr>
<tr>
<td>90_DIFF_BGA</td>
<td>*</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
</tr>
<tr>
<td>85_DIFF_BGA</td>
<td>ISL9, ISL10</td>
<td>0.075 mm</td>
<td>0.125 mm</td>
<td>0.125 mm</td>
<td>0.125 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line-to-Line Spacing</th>
<th>Layers</th>
<th>Minimum Width</th>
<th>Maximum Width</th>
<th>Minimum Gap</th>
<th>Maximum Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm</td>
<td>1:1_DIFFPAIR</td>
<td>0.1 mm</td>
<td>0.1 mm</td>
<td>0.1 mm</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>0.2 mm</td>
<td>2:1_SPACING</td>
<td>0.2 mm</td>
<td>0.2 mm</td>
<td>0.2 mm</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>0.25 mm</td>
<td>2.5:1_SPACING</td>
<td>0.25 mm</td>
<td>0.25 mm</td>
<td>0.25 mm</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>0.3 mm</td>
<td>5:1_SPACING</td>
<td>0.3 mm</td>
<td>0.3 mm</td>
<td>0.3 mm</td>
<td>0.3 mm</td>
</tr>
</tbody>
</table>

TABLE SPACING_RULE_ITEM

<table>
<thead>
<tr>
<th>Spacing Rule Item</th>
<th>Weight</th>
<th>Dielectric</th>
<th>Minimum Width</th>
<th>Maximum Width</th>
<th>Minimum Gap</th>
<th>Maximum Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.140 mm</td>
<td>2x</td>
<td>Dielectric</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
</tr>
<tr>
<td>0.350 mm</td>
<td>5x</td>
<td>Dielectric</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
</tr>
</tbody>
</table>

TABLE SPACING_ASSIGNMENT_ITEM

<table>
<thead>
<tr>
<th>Assignment Item</th>
<th>Weight</th>
<th>Dielectric</th>
<th>Minimum Width</th>
<th>Maximum Width</th>
<th>Minimum Gap</th>
<th>Maximum Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM_CLK</td>
<td>1</td>
<td>Dielectric</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
</tr>
<tr>
<td>BGA_P2MM</td>
<td>2</td>
<td>Dielectric</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
</tr>
</tbody>
</table>

TABLE BOARD_INFO

<table>
<thead>
<tr>
<th>Layer</th>
<th>Minimum Neck Width</th>
<th>Maximum Neck Length</th>
<th>Pair Primary Gap</th>
<th>Pair Neck Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.076 mm</td>
<td>0.076 mm</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
</tr>
<tr>
<td>2</td>
<td>0.075 mm</td>
<td>0.075 mm</td>
<td>STANDARDS</td>
<td>STANDARDS</td>
</tr>
</tbody>
</table>

TABLE PHYSICAL_RULE_ITEM

<table>
<thead>
<tr>
<th>Physical Rule Item</th>
<th>Minimum Width</th>
<th>Maximum Width</th>
<th>Minimum Gap</th>
<th>Maximum Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL_RULE_SET</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
<td>0.140 mm</td>
</tr>
<tr>
<td>PHYSICAL_RULE_SET</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
<td>0.350 mm</td>
</tr>
</tbody>
</table>