SCHEM, MLB DVT, K99

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>2</td>
<td>Thermal Sensors</td>
</tr>
<tr>
<td>3</td>
<td>Voltage & Current Sensing</td>
</tr>
<tr>
<td>4</td>
<td>SMC Support</td>
</tr>
<tr>
<td>5</td>
<td>SATA Connector</td>
</tr>
<tr>
<td>6</td>
<td>FSB/DDR3 Vref Margining</td>
</tr>
<tr>
<td>7</td>
<td>DDR3 DRAM Channel B (32-63)</td>
</tr>
<tr>
<td>8</td>
<td>MCP Graphics Support</td>
</tr>
<tr>
<td>9</td>
<td>MCP Standard Decoupling</td>
</tr>
<tr>
<td>10</td>
<td>MCP HDA, LPC & MISC</td>
</tr>
<tr>
<td>11</td>
<td>Power Aliases</td>
</tr>
<tr>
<td>12</td>
<td>Power Block Diagram</td>
</tr>
</tbody>
</table>

Acoustic Cap BOM Config Tables

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acoustic Cap BOM Config Tables</td>
</tr>
<tr>
<td>2</td>
<td>Additional CPU/GPU Decoupling</td>
</tr>
<tr>
<td>3</td>
<td>LCD Backlight Driver</td>
</tr>
<tr>
<td>4</td>
<td>Power FETs</td>
</tr>
<tr>
<td>5</td>
<td>CPUVTT (1.05V) Power Supply</td>
</tr>
<tr>
<td>6</td>
<td>1.5V/1.35V LVDDR3 Supply</td>
</tr>
<tr>
<td>7</td>
<td>SPI ROM</td>
</tr>
</tbody>
</table>

NOTICE OF PROPRIETARY PROPERTY:

This information contains proprietary technology and is protected by United States copyright law and international treaties. It is furnished to you for the sole purpose of performing work under a contract or license with Apple Inc. You may not disclose or distribute this information to any unauthorized parties without the express written consent of Apple Inc. This information is subject to United States export control laws and may not be exported or reproduced in foreign countries without the authorization of the United States government.
K99 Power System Architecture

Need to update!!!

Power Block Diagram
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>BOM OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>639-1353</td>
<td>1</td>
<td>PCBA, MLB, 1.4GHz, HY 2GB, TY</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF8J, DDR3:HYNIX_2GB, CAPS:TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1448</td>
<td>1</td>
<td>PCBA, MLB, 1.6GHz, EL 4GB, MU</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DG4T, DDR3:ELPIDA_4GB, CAPS:MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1438</td>
<td>1</td>
<td>PCBA, MLB, 1.6GHz, EL 2GB, MU</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DG4G, DDR3:ELPIDA_2GB, CAPS:MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1446</td>
<td>1</td>
<td>PCBA, MLB, 1.6GHz, EL 2GB, SS</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DG4Q, DDR3:ELPIDA_2GB, CAPS:SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1050</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD10, DDR3:MICRON_4GB, CAPS:TY</td>
<td>PCBA, MLB, MI 4GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1049</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD0Y, DDR3:SAMSUNG_2GB, CAPS:TY</td>
<td>PCBA, MLB, SA 2GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1045</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD0T, DDR3:SAMSUNG_2GB, CAPS:SS</td>
<td>PCBA, MLB, SA 2GB, SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1048</td>
<td>1</td>
<td>PCBA, MLB, 1.6GHz, HY 2GB, TY</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD0X, DDR3:HYNIX_2GB, CAPS:TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1439</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DG4H, DDR3:ELPIDA_4GB, CAPS:MU</td>
<td>PCBA, MLB, MI 4GB, MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1447</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DG4R, DDR3:ELPIDA_2GB, CAPS:TY</td>
<td>PCBA, MLB, MI 2GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1443</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DG4M, DDR3:ELPIDA_2GB, CAPS:MU</td>
<td>PCBA, MLB, MI 2GB, MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1442</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DG4L, DDR3:ELPIDA_2GB, CAPS:SS</td>
<td>PCBA, MLB, MI 2GB, SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1349</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF8D, DDR3:SAMSUNG_2GB, CAPS:SS</td>
<td>PCBA, MLB, SA 2GB, SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1357</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF8G, DDR3:SAMSUNG_2GB, CAPS:MU</td>
<td>PCBA, MLB, SA 2GB, MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1351</td>
<td>1</td>
<td>PCBA, MLB, 1.4GHz, SA 2GB, MU</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF82, DDR3:MICRON_4GB, CAPS:TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1340</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF85, DDR3:MICRON_2GB, CAPS:TY</td>
<td>PCBA, MLB, MI 2GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1343</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF88, DDR3:MICRON_2GB, CAPS:MU</td>
<td>PCBA, MLB, MI 2GB, MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1346</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD0W, DDR3:MICRON_2GB, CAPS:TY</td>
<td>PCBA, MLB, MI 2GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1047</td>
<td>1</td>
<td>PCBA, MLB, MI 2GB, TY</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF83, DDR3:HYNIX_2GB, CAPS:MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1341</td>
<td>1</td>
<td>PCBA, MLB, 1.4GHz, HY 2GB, MU</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF8L, DDR3:HYNIX_2GB, CAPS:SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1345</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD0L, DDR3:HYNIX_4GB, CAPS:TY</td>
<td>PCBA, MLB, HY 4GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1039</td>
<td>1</td>
<td>PCBA, MLB, HY 4GB, TY</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF82, DDR3:HYNIX_4GB, CAPS:MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1342</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.6GHz, EEE:DD0W, DDR3:HYNIX_4GB, CAPS:TY</td>
<td>PCBA, MLB, HY 4GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1344</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF86, DDR3:SAMSUNG_4GB, CAPS:SS</td>
<td>PCBA, MLB, SA 4GB, SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1347</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF8N, DDR3:SAMSUNG_2GB, CAPS:TY</td>
<td>PCBA, MLB, SA 2GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1348</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF8G, DDR3:SAMSUNG_2GB, CAPS:MU</td>
<td>PCBA, MLB, SA 2GB, MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1349</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF82, DDR3:MICRON_4GB, CAPS:TY</td>
<td>PCBA, MLB, MI 4GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1350</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF85, DDR3:MICRON_2GB, CAPS:TY</td>
<td>PCBA, MLB, MI 2GB, TY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639-1351</td>
<td>1</td>
<td>K99_CMNPTS, CPU:1.4GHz, EEE:DF88, DDR3:MICRON_2GB, CAPS:MU</td>
<td>PCBA, MLB, MI 2GB, MU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternate Parts

<table>
<thead>
<tr>
<th>BOM Group</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>376S0926</td>
<td>376S0610</td>
<td>CYNCTEC AS ALTERNATE</td>
<td></td>
</tr>
<tr>
<td>107S0139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>353S2987</td>
<td>353S2988</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmable Parts

<table>
<thead>
<tr>
<th>BOM Group</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOM Groups

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>377S0066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>377S0107</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAIYO YUDEN AS ALTERNATE

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>155S0367</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALTERNATE FORPART NUMBER BOM OPTION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>107S0075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104S0018</td>
<td>104S0023</td>
<td></td>
</tr>
</tbody>
</table>

ONSEMI AS ALTERNATE

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>152S0586</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAGLAYERS AS ALTERNATE

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmable Parts

<table>
<thead>
<tr>
<th>BOM Group</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DDR3:ELPIDA_4GB DRAM

- CONFIG0: H
- CONFIG2: H
- CONFIG3: L
- TYPE: ELPIDA_4GB

DDR3:ELPIDA_2GB DRAM

- CONFIG0: H
- CONFIG2: L
- CONFIG3: L
- TYPE: ELPIDA_2GB

K99_PROGPARTS

- BOOTROM: UNLOCKED
- SMC: PROG

K99_MISC

- CAPS: TY CAP_2_2UF, TY CAP_10UF, TY CAP_1UF, TY CAP_22UF
- CAPS: MU CAP_2_2UF, MU CAP_10UF, MU CAP_1UF, MU CAP_22UF

TPS71725DCK

- IC ASSY, EFI, UNLOCKED, K99
- CRITICAL

TAIYO ASS ALTERNATE

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>155S0367</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMON, ALTERNATE

- PROJ: K99
- MCP89U: A03
- DEBUG: ENG
- SMC, PROG
- SPI: 41MHZ
- LVDDR3: YES
- WLAN_PCTL: HW
- IPD_5V: S5_INT
- IPD_3V3: S5

BKLT: ENG, BMON: ENG

- XDP, CONN, LPCPLUS, VREFMRGN: YES
- EFI_DEBUG, S0PGOOD, ISL
- MCPPLL_LDO, S3_S0, LED

COMMON

- PROJ: K99, MCP89U: A03, K99_MISC
- DEBUG: ENG
- SMC, PROG
- SPI: 41MHZ
- LVDDR3: YES
- WLAN_PCTL: HW
- IPD_5V: S5_INT
- IPD_3V3: S5

COMMON, ALTERNATE

- PROJ: K99
- MCP89U: A03
- DEBUG: ENG
- SMC, PROG
- SPI: 41MHZ
- LVDDR3: YES
- WLAN_PCTL: HW
- IPD_5V: S5_INT
- IPD_3V3: S5

COMMON

- PROJ: K99
- MCP89U: A03
- DEBUG: ENG
- SMC, PROG
- SPI: 41MHZ
- LVDDR3: YES
- WLAN_PCTL: HW
- IPD_5V: S5_INT
- IPD_3V3: S5
CPU Power & Ground

Apple Inc. 051-8373 1
4.4.0

NOTICE OF PROPRIETARY PROPERTY:

All rights reserved. The information contained herein is the property of Apple Inc. and constitutes proprietary information which is furnished to you for use solely in connection with the purchase and operation of Apple products. You may not disclose this information to any third party or use this information for any unauthorized purpose. Any unauthorized reproduction, use, or disclosure is strictly prohibited.

The holder of this drawing indemnifies and holds harmless Apple Inc. against any and all claims, liabilities, costs, expenses or damages arising out of, or related to this drawing, whether caused by negligence or otherwise.

THE INFORMATION CONTAINED HEREIN IS THE NOTICE OF PROPRIETARY PROPERTY:

THE POSSESSOR AGREES TO THE FOLLOWING:

I NOT TO REVEAL OR PUBLISH IT IN WHOLE OR PART

II NOT TO REPRODUCE OR COPY IT

III NOT TO MAKE ANY DERIVATIVE WORKS

IV NOT TO REPRODUCE IT IN ANY FORM WITHOUT THE WRITTEN CONSENT OF APPLE INC.

PAGE TITLE

OMIT_TABLE

www.vinafix.vn
Micro2-XDP Connector

NOTE: This is not the standard XDP pinout.

Use with X20-0782 Adapter Flex to support chipset debug.

Direction of XDP adapter flex

Please place J1300 within 1" of board edge with odd-numbered pins facing edge. Avoid any tall components between J1300 and edge.

PE0 ports are Gen2-capable. 4 RCs: x4, x2, x1, x1

PE1 ports are Gen1-only. 2 RCs: x1, x1

+VIO_PE_AVDD0 and +VIO_PE_DVDD0 can be GND
If PE0[3:0] are not used,

+VIO_PE_AVDD1 and +VIO_PE_DVDD1 can be GND
If PE0[4:5] and PE1[0:1] are not used,

www.vinafix.vn
DDC Mode Pull-downs

NOTE: 100k pull-downs required if HPLUG_DET0/HPLUG_DET1 are not used.

GPIO Pull-Ups

NOTE: Pull-ups are necessary if used for TMDS/HDMI only then dual-mode DisplayPort (DP++). If unused no pulls are necessary.

HPLUG_DET0/HPLUG_DET1 are not used.

NOTE: 100K pull-downs required if HPLUG_DET0/HPLUG_DET1 are not used.

8 7 5 4 2 1

8 17 19

8 20 23

MXM_GOOD_L

R1800 100K MF1/20W 5%

R1801 100K MF1/20W 1%

R1805 2.49K MF1/20W 1%

35 67 35 67 35 67 35 67 9 67 9 67 9 67 9 69 9 69 9 69 9 69 9 69 9 67 OUT OUT OUT OUT IN IN IN IN IN IN IN IN IN IN

49.9 49.9 20 mA

SATA_ODD_D2R_P

SATA_ODD_D2R_N

ENET_RXD<2>

MCP_MII_COMP_GND

MCP_MII_COMP_VDD

PP3V3_ENET_MCP_PLL_MAC

ENET_ENERGY_DET

ENET_RX_CTRL

ENET_CLK125M_RXCLK

SATA_ODD_R2D_C_N

SATA_ODD_R2D_C_P

SATA_HDD_D2R_N

SATA_HDD_R2D_C_N

SATA_HDD_R2D_C_P

Connect RGMII_MDIO to 10K pull-down.

All other pins can be left TP or NC.

Connect RGMII_RXCTL to 10K pull-down.

Connect RGMII_VREF to 10K pull-down.

RGMII_COMP_VDD/_GND must remain connected as shown.

+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.

Connect RGMII_INTR to 10K pull-down (if not used as GPIO).

Connect RGMII_RXCLK to 10K pull-down.

Internal MAC Disable:

Connect RGMII_RESET* together to 10K pull-down.

Connect RGMII_RDPRI to 10K pull-down.

Connect RGMII_RPDUP to 10K pull-down (if not used as GPIO).

+3.3V_PLL_MAC_DUAL must remain connected to 3.3V RMGT rail.

RGMII_COMP_VDD/_GND must remain connected as shown.

Connect RGMII_VREF to 10K pull-down.

Connect RGMII_MDI0 to 10K pull-down.

All other pins can be left TP or NC.
NOTE: "SW" rails are dynamically switched in the SO state as needed, controlled by MCP89 GPIOs.

NOTE: VDD_CORE_BYTES signals should NOT be used for system enabling unless VDD_COREA/COREB are powered by separate regulators. Instead, connect regulators closest to COREA/B as possible.
DIMM CKE Clamps

CKE must be held low to keep memory in self-refresh. Clamps enable after MCP89 MEMVDD rail switched off. Clamps release after MCP89 MEMVDD is up and CKEs are driven by MCP89. A clamp is used on each CKE signal on DIMM. Q2355/Q2356 chosen for low output capacitance.

Approx. Rise Time (EN to 1.35V, uS): 7.91 + 0.0678 * R1 (Kohms)

Gated Rail Savings: 120mW

NV Requirements:
- Min Ramp-Up Time: 20 uS (10% to 90%)
- Max Ramp-Up Time: 65 uS (ENABLE to 90%)

- FET Ron <= 3.8 mOhms

- Max Current: 4.3 A (EDP)

Q2300

Type: N-Channel

Part: STMFS4854N

Rds(on) 10 mOhm @3.2V

C2300 helps reduce input rail droop during Q2300 turn-on.
Approx. Ramp Time (EN to 1V, uS): \(43.9 + 0.6943 \times C1(pF)\)

- Min Ramp-Up Time: 100 uS (10% to 90%)
- Max Ramp-Up Time: 1500 uS (ENABLE to 90%)
- FET \(R_{on} \leq 2.5\) mOhms
- Gated Rail Savings: 860mW

NOTE: nVidia recommends Infineon BSC020N03MS for Q2400.

C2400 helps reduce input rail droop during Q2400 turn-on.

\(C_{2400}\) helps reduce input rail droop during Q2400 turn-on.

Approx. Ramp Time (EN to 1V, uS): \(43.9 + 0.6943 \times C1(pF)\)

- Min Ramp-Up Time: 100 uS (10% to 90%)
- Max Ramp-Up Time: 1500 uS (ENABLE to 90%)
- FET \(R_{on} \leq 2.5\) mOhms
- Gated Rail Savings: 860mW

NOTE: nVidia recommends Infineon BSC020N03MS for Q2400.
MCP 3.3V RGBDAC Power

MCP 1.05V DisplayPort Power

If RGBDAC is used, requires ferrite (155S0382)
plus 1x 4.7µF 0603 & 1x 0.1µF 0402 cap.

If RGBDAC is not used, tie to GND.

Note: To maintain this document in confidence, it is not to be reproduced or copied in whole or part. The information contained herein is the proprietary property of Apple Computer, Inc.
A14/A15 FOR 2G/4G MODE ONLY
CS1 IS FOR 2G DOP RANK CONTROL
NOTE: Unused pins have "(SMC_PWR_EN)" names. Unused pins designed as outputs can be left floating, those designated as inputs require pull-ups.
Another slave port is available at 0x10/0x11, probably not used.

MCP89 SMBus 1 is slave port to EFI Debug Serial
(Write: 0xE0 Read: 0xE1)
(Write: 0x30 Read: 0x31)
(Write: 0x98 Read: 0x99)

XDP Connector
(Write: 0xAD/0xAF)
(Write: 0xAC/0xAE)

MCP89 SMBus "1" Connections
(Write: 0xA9/0xAA)

MCP89 SMBus "0" Connections
(Write: 0x9F/0xA0)

SMC "0" SMBus Connections
(Write: 0x72 Read: 0x73)

Internal DP
(Write: 0x58 Read: 0x59)

Battery
Battery Charger - (Write: 0xB7 Read: 0xB8)
Battery LED Circuit - (Write: 0x68 Read: 0x69)

Battery Temp - (Write: 0x98 Read: 0x99)

ALS - N/A (Feature Removed)

Mikey
Finstack Temp - (Write: 0x98 Read: 0x99)

SMC "Management" SMBus Connections
See Table

SMC "Battery A" SMBus Connections
See Table

SMC "A" SMBus Connections
(Write: 0x12 Read: 0x13)

SMC "B" SMBus Connections
(Write: 0x90 Read: 0x91)
DCIN (AMON) Current Sense, RMUX & Filter

ISL6259 Gain: 20x
- Gain: 200x
- Notes: Place near sense resistor
- From charger
- Sense R: R7022
- Value: 20 mOhm
- Max Vdiff: 2.3mV

Battery (BMON) Current Sense, MUX & Filter

- Gain: 36x
- Notes: Place near sense resistor
- From charger
- Sense R: R7050
- Value: 10 mOhm
- Max Vdiff = 24.8mV

Chipset Regulators High-Side Current Sense / Filter
- ISL6259 Gain: 20x
- Notes: Place near sense resistor
- Max Vdiff: 80mV

VERIFY ALL RESISTOR AND GAINS

MCP VCore Current Sense Filter
- Gain: 100x
- Notes: Do not stuff R5415 and R7593 at the same time!

MCP MEM VDD Current Sense / Filter
- Notes: Place near sense resistor

CPU VCore Load Side Current Sense / Filter
- Notes: Place near sense resistor

PLACEMENT_NOTEs:
- Place near sense resistor
- Place close to BNC

NOTE:
- Monitoring current from battery to BMON (battery discharge, access R7050)

Apple Inc.

Current Sensing

911-03773 4.4.0

Silicon Gardens, CA USA 92676-2835

www.vinafix.vn
FAN CONNECTOR
NOTE: 42 & 62 MHz use FAST_READ command.

ROM will ignore SPI cycles.

NOTE: If HOLD* is asserted, ROM will ignore SPI cycles.

MCP2202 SPI Frequency Select:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SPI_MOSI</th>
<th>SPI_CLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0 MHz</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41.7 MHz</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>62.5 MHz</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: 42 & 62 MHz use FAST_READ command.
SPEAKER AMPLIFIERS

APN: 353S2888

SPEAKER LOWPASS 80 Hz < FC < 132 Hz
GAIN 6dB

NOTICE OF PROPRIETARY PROPERTY:
PROPRIETARY PROPERTY OF APPLE COMPUTER, INC.

I TO MAINTAIN THIS DOCUMENT IN CONFIDENCE
II NOT TO REPRODUCE OR COPY IT
III NOT TO REVEAL OR PUBLISH IT IN WHOLE OR PART

SYNC_MASTER=AUDIO
AUDI0: SPEAKER AMP
VOLTAGE=5V
MIN_LINE_WIDTH=0.5 mm
MIN_NECK_WIDTH=0.25 mm
PP5V_S3_U6610
MAX98300_R_N = PP5V_S3_AUDIO_AMP
SPKRAMP_INR_N
R_AMP_GAIN
SPKRAMP_INR_P
AUD_GPIO_3
MIN_NECK_WIDTH=0.20 MM
MIN_LINE_WIDTH=0.30 mm
SPKRAMP_R_N_OUT
MIN_NECK_WIDTH=0.20 MM
MIN_LINE_WIDTH=0.30 mm
SPKRAMP_R_P_OUT
MAX98300_R_P
66 OF 110
4.4.0
051-8379
48 OF 73

www.vinafix.vn
IMVP6 CPU VCore Regulator

OCP = 21.5MV / R7480 + 3.1A
VPMON = 90 X R7480 X VO X IO
18A @ 3V = 1.62V
LOAD LINE = R7480 X 6 / (500U X R7414)

CPU_VCCSENSE_N

CPU_VCCSENSE_P

R7480

1/20W

5%
Vimon = 31 * Io * R7525 * (1 + R7575/R7573)

OCP = R7569 X 100A / (R7525 X (1 + R7575/R7573))

\[\text{Vimon} = 31 \times \text{Io} \times R7525 \times (1 + \frac{R7575}{R7573}) \]

\[\text{OCP} = \frac{R7569 \times 100A}{R7525 \times (1 + \frac{R7575}{R7573})} \]
Place XM7610, XM7611 at desired location for remote sensing.

VOLTAGE = 5V
MIN_NECK_WIDTH = 0.2 mm
MIN_LINE_WIDTH = 0.6 mm

CPUVTTS0_AGND
CPUVTTS0_FB
CPUVTTS0_RTN
CPUVTTS0_VO
CPUVTTS0_PGOOD
PP5V_S0_CPUVTTS0

Vout = 1.05V
11.5A Max Output
f = 300 kHz

OCP = R7641 x 8.5mA / R7640
Vout = 0.5V * (1 + Ra / Rb)
NOTE: Pulled up to 5V on DP connector page. FET spec’ed for 1.5V Vgs operation.

Q9302 Ssignal_model=DP_AUXCH_FET SSM6N37F EAPE SOT563

C9302 3300PF 10% 10V X7R

R9302 MF 1/20W 5% 201

External DisplayPort Support

SYNC_MASTER=K16_MLB SYNC_DATE=07/07/2010

www.vinafix.vn
A

SOURCE: MCP79 Interface DG (DG-03328-001_v01), Section 2.2.5

FSB Clock Constraints

MCP FSB COMP Signal Constraints

CPU Signal Constraints

Spacing is 1x dielectric between ADDR#, REQ# signals, with 2x dielectric spacing to ADSTB#.

Signals within each 2x group should be matched within 20 ps. ADTSB#s should be matched +/- 270 ps.

Spacing is 2x dielectric between DATA#, DINV# signals, with 3x dielectric spacing to the DSTB#s.

Signals within each 4x group should be matched within 5 ps of strobe.

Intel Design Guide recommends FSB signals be routed only on internal layers.

NOTE: Intel Design Guide allows closer spacing if signal lengths can be shortened.

SOURCE: MCP79 Interface DG (DG-03328-001_v01), Section 2.1

SOURCE: Santa Rosa Platform DG, Rev 1.3 (A22241), Sections 4.4 & 4.5

CPU/FSB Constraints

MCP FSB COMP Signal Constraints

RULES

FSB Clock Constraints

SOURCE: MCP79 Interface DG (DG-03328-001_v01), Section 2.1.4

SOURCE: MCP79 Interface DG (DG-03328-001_v01), Section 2.1
PCI-Express

SATA Interface Constraints

Source: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.6

DisplayPort AUX CH intra-pair matching should be 5 ps. No relationship to other signals.

DisplayPort/TMDS intra-pair matching should be 5 ps. Inter-pair matching should be within 100 ps.

Source: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.4.1.

- 75-ohm from output of three-pole filter to connector (if possible).
- 50-ohm from first to second termination resistor.

CRT signal single-ended impedence varies by location:

Analog Video Signal Constraints

NEED PCIe Gen1/Gen2 notes!

Source: MCP89 Interface DG (DG-04625-001_v0.9), Section 2.3

Digital Video Signal Constraints

PCI-Express

MCP89 Net Properties

MCP Constraints 1

Apple Inc.

The Possessor agrees to the following:

NOTICE OF PROPRIETARY PROPERTY:

This document or the information contained herein is the property of Apple Inc., or its suppliers, and may be protected by various intellectual property rights including United States and foreign patents, copyrights, trademarks, trade secrets and other proprietary rights. This document or the information contained herein is intended for Apple's authorized licensees or vendors. Its disposition is subject to the terms of a materials or technology transfer agreement between Apple and its authorized licensees or vendors. It is not to be published or reproduced without the express written consent of Apple Inc.
SD Card Interface Constraints

<table>
<thead>
<tr>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP73 Interface DG (DG-02974-001_v01), Section 2.7.4</td>
<td>- Platform-specific constraints for SD Card interfaces</td>
</tr>
</tbody>
</table>

SD Card Net Properties

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_D<7..5></td>
<td>Different to support different controllers.</td>
</tr>
</tbody>
</table>

SD_55S Interface

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_INTERFACE</td>
<td>- Platform-specific interface constraints</td>
</tr>
</tbody>
</table>

Ethernet Net Properties

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENET_RESET_L</td>
<td>- Minimum length constraints for Ethernet reset lines</td>
</tr>
<tr>
<td>ENET_MDI_N<3..0></td>
<td>- Minimum length constraints for Ethernet MDI pins</td>
</tr>
</tbody>
</table>

MCP RGMII (Ethernet) Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENET_CLK125M_RXCLK_R</td>
<td>- Clock delay constraints for RGMII RXCLK pin</td>
</tr>
</tbody>
</table>

RGMII Net Properties

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENET_MII</td>
<td>- Platform-specific constraints for RGMII interface</td>
</tr>
</tbody>
</table>

Ethernet Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENET_TXD<3..1></td>
<td>- Minimum length constraints for Ethernet TXD pins</td>
</tr>
</tbody>
</table>

Electrical Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_55S</td>
<td>- Platform-specific electrical constraints for SD Card interface</td>
</tr>
</tbody>
</table>

Note

- SD Card interfaces have specific constraints to support different controllers.
- Ethernet interfaces have specific delay constraints for RGMII RXCLK pin.
<table>
<thead>
<tr>
<th>NET_ID</th>
<th>NET_NAME</th>
<th>NET_TYPE</th>
<th>PHYSICAL SPACING</th>
<th>ELECTRICAL_CONSTRAINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBUS_SMC_A_S3_SCL</td>
<td>SMBUS_SMC_A_S3_SCL</td>
<td>SMBUS_SMC_A_S3_SCL</td>
<td>SMBUS_SMC_A_S3_SCL</td>
<td>SMBUS_SMC_A_S3_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_MGMT_SCL</td>
<td>SMBUS_SMC_MGMT_SCL</td>
<td>SMBUS_SMC_MGMT_SCL</td>
<td>SMBUS_SMC_MGMT_SCL</td>
<td>SMBUS_SMC_MGMT_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_0_S0_SCL</td>
<td>SMBUS_SMC_0_S0_SCL</td>
<td>SMBUS_SMC_0_S0_SCL</td>
<td>SMBUS_SMC_0_S0_SCL</td>
<td>SMBUS_SMC_0_S0_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_B_SA_SCL</td>
<td>SMBUS_SMC_B_SA_SCL</td>
<td>SMBUS_SMC_B_SA_SCL</td>
<td>SMBUS_SMC_B_SA_SCL</td>
<td>SMBUS_SMC_B_SA_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_B_S_SCL</td>
<td>SMBUS_SMC_B_S_SCL</td>
<td>SMBUS_SMC_B_S_SCL</td>
<td>SMBUS_SMC_B_S_SCL</td>
<td>SMBUS_SMC_B_S_SCL</td>
</tr>
<tr>
<td>SMBUS_SMC_A_S_SCL</td>
<td>SMBUS_SMC_A_S_SCL</td>
<td>SMBUS_SMC_A_S_SCL</td>
<td>SMBUS_SMC_A_S_SCL</td>
<td>SMBUS_SMC_A_S_SCL</td>
</tr>
</tbody>
</table>

SMC SMBus Net Properties

SMC SMBus Charger Net Properties
K99 BOARD-SPECIFIC SPACING & PHYSICAL CONSTRAINTS

| TABLE_PHYSICAL_RULE_ITEM | TABLE_PHYSICAL RULE_HEAD

A

B

C

D

www.vinafix.vn
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10UF 0402</td>
<td></td>
<td>CAPACITOR</td>
<td>VENDOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MURATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAIYO YUDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACOUSTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10UF 0402 CAPACITOR VENDOR TABLES FOR ACOUSTICS

SAMSUNG

MURATA

TAIYO YUDEN

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2UF 0402</td>
<td></td>
<td>CAPACITOR</td>
<td>VENDOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MURATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAIYO YUDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACOUSTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2UF 0402 CAPACITOR VENDOR TABLES FOR ACOUSTICS

SAMSUNG

MURATA

TAIYO YUDEN

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10UF 0603</td>
<td></td>
<td>CAPACITOR</td>
<td>VENDOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MURATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAIYO YUDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACOUSTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10UF 0603 CAPACITOR VENDOR TABLES FOR ACOUSTICS

SAMSUNG

MURATA

TAIYO YUDEN

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
<th>PART NUMBER</th>
<th>Qty</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>CRITICAL</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>22UF 0603</td>
<td></td>
<td>CAPACITOR</td>
<td>VENDOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAMSUNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MURATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAIYO YUDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACOUSTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22UF 0603 CAPACITOR VENDOR TABLES FOR ACOUSTICS

SAMSUNG

MURATA

TAIYO YUDEN

www.vinafix.vn